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Abstract

We introduce causal automata, a formalism based on a syntactic approach to causality
in contrast to conventional approaches based on partial orders. Our main result is the
following characterisation of Milner’s notion of confluence in CCS:

Confluence = Determinism + {AND, OR} Causality.
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1 Introduction

In this paper we introduce causal automata, a formalism based on a syntactic approach to
causality in contrast to conventional approaches based on partial orders. The motivation for
this comes from Milner’s notion of confluence in CCS, [IH, Chapter 10], [16, Chapter 11]. This
is a strong labelled version of the confluence that is customarily studied in term rewriting
systems, [I1]. Causal automata provide the following insight into confluence in Milner’s sense:

Confluence = Determinism + {AND, OR} Causality.

A precise statement is given in Theorem [[L2. We restrict attention to the finite case, for reasons
which are discussed below. A more general and systematic study of causality will appear in a
sequel to the present paper, [8].

Although the motivation for our results comes from CCS the results are stated and proved
without any direct reference to Milner’s calculus. We have, therefore, devoted an extended
introductory section to giving an informal explanation of the origin of our ideas.

1.1 Determinism and Confluence

Milner’s notion of confluence in CCS is closely related to, but distinct from, the customary
idea of confluence in term rewriting systems. Huet, [I1], has studied confluence in the abstract
setting of a binary relation (reduction) on sets. For our purposes we can think of this as a
transition system: a pair (S, —) where S is a set and —C S x S is a transition relation. We
use the notation — for the reflexive-transitive closure of —.

Definition 1.1 A transition system is confluent (in the general sense) if whenever E A F
and E 5 G, it is possible to find H € S such that F = H and G = H.

Confluence implies the Church-Rosser property: normal forms, if they exist, are unique.
Newman, [I7], seems to have been the first to use the word confluence. Keller, [I3], pointed
out the importance of confluence in several areas of parallel computation: parallel programme
schemata, vector replacement systems, switching theory. Huet’s elegant paper, [I1], is itself a
point of confluence for much earlier work.

Milner’s notion of confluence in CCS, [I6, §11.3], is a stronger labelled form of confluence.
To describe it we need some notation. A* will denote strings over the label set A. The
empty string will be denoted by e, concatenation of strings by juxtaposition, st, or, when
clarity dictates, by s.t. The excess of s over ¢, [, Definition 6, §11.3], denoted s/t, is defined
recursively by the rules below.

eft = €

B a(s/t) if a does not appear in ¢
(as)/t = { s/(t/a) otherwise.

For instance, abadca/caab = badca/cab = adca/ca = dca/c = da.

Consider labelled transition systems of the form (S5, —, A*) where the labels are strings
and the transition relation, —C S x A* x S, is “closed”: E > F and F La implies Liye]
Such a system might come from taking the transitive closure of a labelled binary relation or
by applying more complex transformations as in the relation P = @ of CCS, [18, §5.1], where
hidden actions are ignored.



Definition 1.2 A labelled transition system is confluent (in the sense of Milner) if whenever
ESF andELG, it 1s possible to find H € S such thatFt/—fH andGslfH.

In this paper we use the word confluent in this stronger labelled sense. We should point
out that the definition of a confluent process in CCS, [I5, Proposition 11], also incorporates
an appropriate equivalence relation on CCS terms, such as weak bisimulation. The definition
given above is sufficient for our purposes; it makes apparent the relationship with confluence
in the general sense. In the rest of this paper we shall be largely concerned with confluent
trace sets.

Definition 1.3 A set of strings, T C A*, is a confluent trace set if T is a trace set (ie: € €T
andrs €T = reT) and,
r,seT = r(s/r)eT.

If a labelled transition system arises by transitive closure and is confluent in the sense of
Definition [L.9, then for each element E € S, the set of strings {s | IF € S with E > F} forms
a confluent trace set.

Milner’s introduction of confluence was motivated by his work on determinism. (We use the
word determinism in preference to Milner’s determinacy.) There seems to be some confusion
about the exact meaning of this word. For us it will always mean that the past determines the
present. This corresponds to the dictionary definition of determinismf] and is the one adopted
by Milner for CCS, [, Chapter 11, Definition 3] (weak determinacy), and by Vaandrager,
[22, §3.6], for event structures. Note that it differs from the one used by Aceto et al in [,
Definition 3.3]. Keller uses determinism in the same sense as us, [I3, Definition 1.3(D)], but
uses determinacy to mean something analogous to the Church-Rosser property.

By way of example, the CCS process T.a.nil 4+ 7.b.n:l is not deterministic, since to begin
with it may sometimes be prepared to offer a and sometimes not. One frequently encounters
the assertion that the process a.b.nil + b.a.nil “exhibits sequential non-determinism”. As far
as we are concerned, this process is perfectly deterministic; it merely offers an initial choice
between the actions a and b.

Deterministic systems are interesting for two main reasons. They occur widely in real-life
and they are particularly easy to reason about: their behaviour is determined by trace-level
information. This “folk theorem” has to be stated differently depending on the formalism
which is used. Milner shows, [I6, Chapter 11, Proposition 5], that two deterministic CCS
processes are weakly bisimilar if, and only if, they have the same set of traces. Vaandrager
shows, [22, §5.1], that two deterministic event structures are isomorphic if, and only if, they
have the same set of step sequences.

The problem with determinism in CCS is that it lacks compositionality. If we place two
deterministic CCS processes in parallel, the result need not be deterministic, as the example
of a.b.nil|a.c.nil shows. Similarly for most of the other algebraic operators in CCS. This
is a serious difficulty, because we would like to infer the property of determinism from the
syntactic structure of a CCS term. Milner’s approach to this problem is to introduce the
stronger property of confluence. Confluent processes are necessarily deterministic although
not all deterministic processes are confluent. Confluence does exhibit some compositionality.
Milner shows that certain derived operations in CCS, in particular a form of restricted parallel
composition, do preserve confluence, 6, Chapter 11, Proposition 17]. This provides a method

!The philosophical doctrine that all events - - - are fully determined by preceding events. (Collins Dictionary
of the English Language, Second Edition, 1986.)



for building up confluent, and hence deterministic, processes. Rem and others have considered
a similar notion, conservatism, in CSP, [20], for much the same reasons.

Up to now we have made no mention of causality. Indeed causality is frequently associated
with “true concurrency” in antagonism to the interleaving semantics of CCS, [[9]. Perhaps
one of the messages of this paper is that causality is a valuable tool with which to study any
semantics, interleaving or otherwise.

We became interested, independently of Milner’s work and for rather pragmatic reasons,
[, §3], in deducing the causal relationships between observable actions in a CCS process. Our
methods led us to a subset of finite CCS processes which we called purely parallel, [G, @], for
which we proved the following result, [, Theorem 3.

Theorem 1.1 There exists a function v, which associates to each purely parallel process, P,
a finite deterministic labelled poset, v(P), such that traces(P) = seq(y(P)). This function
induces a one-to-one correspondence between equivalence classes, under weak bisimulation, of
purely parallel processes and finite deterministic pomsets.

The sequences of a labelled poset are the prefixes of its linearizations. A labelled poset,
and the corresponding pomset, is deterministic if no two events with the same label are con-
current. This used to be referred to as “absence of auto-concurrency”. It corresponds exactly
to Vaandrager’s definition of determinism if a poset is regarded as a conflict-free prime event
structure.

This result gives a denotational semantics to the language of purely parallel processes
which is fully abstract for weak bisimulation. (In fact, it gives rather more, and the extra
information is quite valuable in practice, [, §3.2].) If we note that posets, in the absence
of additional structure, can only capture AND causality, we can summarise the result in the
following informal way:

Pure Parallelism = Determinism + {AND} Causality.

While this work was in progress, Robin Milner pointed out to us that the operations used
to build up purely parallel processes are exactly those which preserve confluence. This crucial
observation raised the following question. Do we get all confluent processes, or at least the
finite ones, in this way? The answer is no, not even up to weak bisimulation, as the following
example shows:

C = (a.x.nil|b.x.nil|Z.c.nil)\{z}.

It is not hard to prove that this process is confluent, [B, §7]. (Readers may like to convince
themselves that traces(C) is at least a confluent trace set.) If C' were weakly bisimilar to a
purely parallel process, Theorem [[.1] would imply the existence of a poset having the following
set of sequences:

{e,a,b,ac,bc, ab, ach, bea, abe}.

In such a poset, the events a and b would have to be initial but ¢ could not be, since ¢ does not
appear initially. But if ¢ were dependent on a then the sequence bca would not be possible;
similarly if ¢ were dependent on b the sequence achb would not be possible. Hence no such
poset can exist. It follows that the process C' is confluent but cannot be built, even upto weak
bisimulation, by the operations which are known to preserve confluence. This counterexample
is the starting point of this paper.
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Figure 1: Net with OR causality

1.2 Causal Automata

It is instructive to follow the philosophy of [6] and to work out the causal relationships between
the observable actions in the process C' above. The actions a and b are causally independent
and can appear in any order in the traces of C'. However, ¢ cannot appear until either a or b has
appeared. The simplest, and, in our view, the most insightful way to describe this behaviour
is to say that ¢ depends causally on a OR b.

The idea of OR causality seems a very natural one. However, none of the formalisms
used for specifying reactive systems, [d], seem to provide a convenient way to express it. For
instance, example C' is equivalent to one given by Winskel, [23, page 7], as an illustration of
instability in event structures. Most authors, |1, 2, 3, &, I8, 22, 23], have studied stable event
structures and have found instability to be either unnecessary or undesirable. Of the available
formalisms, Petri nets provide the most painless way to represent OR causality, as shown in
Figure [l, albeit at the expense of resorting to unsafe nets. In this paper we would like to
take causality more seriously by introducing causal automata, a formalism in which causal
relationships like OR causality can be easily expressed.

Definition 1.4 A causal automaton consists of a finite set, E, of events and a function,
p: E — BE, from E to the free Boolean algebra, BE, generated by E.

The restriction to finite sets of events will hold throughout this paper. We discuss the
difficulties with the infinite case in §1.4 below. Causal automata are conveniently specified in
tabular form, as shown below. The first column gives the events e while the second gives p(e).

e1 €3 = é4
a T b
a - ey e
Cl=|b T C2 = c3=| 2 "
b —a e3 €] = €y
¢ aVb
€4 €3

The Boolean expression p(e) represents the causal “guard” which must become TRUE before
the event e can occur. Initially, no events have occurred. This is expressed by setting each of
the generators e € E to FALSE. The expressions p(e) then simplify to some truth value. Those
events for which p(e) becomes TRUE are said to be enabled and may occur. The others, for
which p(e) evaluates to FALSE, cannot yet do so.

If an event e occurs, then it should be removed from the set E of events. However, the
causal guards of the remaining events may still contain e. We may express the fact that e
has occurred by setting e to TRUE, thereby removing the generator e from the values of the



function p. It should now be clear that we have constructed a new causal automaton £’ where
F =FE —{e} and pr(z) = pe(z)[e — T] for each z € F. The automaton E has engaged in the
event e and evolved into the automaton F'.

The example C'1 represents the same behaviour as the CCS process C described above.
Setting each of a, b and ¢ to FALSE, we see that only a and b are enabled. If either of these
occur, then ¢ will become enabled in the resulting automaton, since (T V p) = T. (We use the
symbol = to indicate equality in the Boolean algebra. At the propositional level, p = ¢, if, and
only if, p < ¢ is a tautology.)

The behaviour of C3 is rather different. If we set each of the events e1, es, e3 and e4 to
FALSE then e; and e3 become enabled since (F = F) = T. Either of these events may occur.
If e1 occurs then C3 evolves into the automaton

ea T
D= €3 €9
€4 €3

since (T = e2) = ea. The further behaviour of automaton D is straightforward: the events
e, €3 and ey are offered in that order. If, on the other hand, C'3 were to engage in es initially
then the events ey4, e; and eo, in that order, will be offered subsequently. Although the event
e3 is enabled in C3 it becomes disabled in D and remains so until e5 has been offered.

Example C2 uses NOT causality. If both a and b are set to FALSE then both events are seen
to be enabled and either may occur. However, if a occurs this has the effect of permanently
disabling b and vice-versa. There is a close similarity between NOT causality and conflict in
event structures.

The events in a causal automaton do not correspond directly to actions but rather to
occurrences of actions. It is customary to use a labelling function, £ : E — A, to associate
an action with each event. As a general rule, the Latin letters a, b, ¢, eq, - - - will denote events,
while Greek letters «, 3, - - will denote actions. In tabular descriptions of causal automata a
third column will be used to indicate the labels of events, as shown below.

€1 €3 =>e4 «
e e

cu_| e @ B
e3 €1 = €2 «
€4 €3 Y

If this third column is omitted then the labelling function is deemed to be the identity and
actions are identical with events.

1.3 AND, OR Causality

Our intention in this paper is not to give a systematic treatment of causal automata, leaving
that task to Causal Automata II. Instead, we feel it is best to show first that they are gen-
uinely useful. Returning to the problem of confluence, we remarked above that purely parallel
processes only require AND causality, while example C' uses OR causality. This suggests that
we investigate automata which only use AND and OR causality. More precisely, we shall say
that the automaton E is a {A,V}-automaton if each p(e) can be written in terms of the gen-
erators of E using only the operations A and V, and possibly also the constant T. C'1 above is
a {A,V}-automaton while C2 and C3 are not. The main result of this paper is the following
causal characterisation of confluence.



Theorem 1.2 If E is a deterministic {A,V}-automaton then the set of action traces of E is
a (finite) confluent trace set. Conversely, every finite confluent trace set is the set of action
traces of some deterministic {A,V}-automaton.

A deterministic automaton will be defined precisely in §2, but the discussion given in §1.1
should make it fairly clear what form the definition will take. Informally,

Confluence = Determinism + {AND, OR} Causality.

This makes it clear how confluence differs from pure parallelism. It differs twice as much.
Pure parallelism is one dimensional, as measured by AND causality; confluence has an extra,
orthogonal dimension of variability expressed by OR causality.

This result provides a syntactic approach to confluence although the syntax expresses causal
relationships between events rather than process constructions. It still leaves unresolved the
problem of constructing all confluent processes in CCS. One approach might be to use the
process C itself as a template for a ternary derived operation in CCS which would implement
OR causalityf]. Such questions are beyond the scope of the present paper.

It may be felt that Theorem [[2 has too much of the flavour of formal language theory.
It says in effect that a confluent trace set is one which is accepted by a suitable automaton.
The use of the word automaton probably reinforces this. We feel this restricted viewpoint is
justified because of the deterministic nature of the problem.

It is perhaps worth pointing out that there are automata, which are not {A, V}-automata,
which nonetheless have confluent sets of action traces. Example C5 below

=c
ChH =

o oo
>~ o

has action traces {e, a, ab, abc}, which is certainly confluent.

1.4 Restrictions, extensions and related work

The definition of a causal automaton allows only a finite set of events. In keeping with this,
Theorem [.2 applies only to finite confluent trace sets. Clearly, this is a serious restriction.
What can we say about the infinite case?

The first point to note is that infinite sets of events allow the possibility of infinitary causal
operations. In this respect infinitary OR is more palatable than infinitary AND and perhaps
even essential for expressing unbounded choice. This discrepancy between AND and OR should
warn us that the familiar dualities of classical propositional logic are threatened in the infinite
case. Even more striking is the fact that there exists no free complete Boolean algebra on
countably infinitely many generators, [I2, §4.10]. These difficulties prompt us to reconsider
the logic underlying our descriptions of causal relationships. Our use of classical propositional
logic for causal automata is, to a great extent, a mechanical following of the path of least
resistance. In the infinite case a more discriminating approach is required. In a sequel to the
present paper, [8], we discuss the requirements for such a logic of causality and report on some
promising experiments with geometric automata: automata based on geometric logic.

There remains the question of whether Theorem [[.2 holds for infinite trace sets. We believe
that such a result does hold, albeit with some finiteness restriction such as finite branching of

2This suggestion comes from Chris Tofts.



the trace set. One way to approach such a result is to step back and consider a more general
problem. How do our automata relate to other concurrency formalisms? Their closest relative
is undoubtedly Winskel’s event structures. We refer here to the most general kinds of event
structure which Winskel has studied in [23, 24]. Both formalisms are based on an underlying
set of events; they differ in the fuel which drives their behaviour. Event structures use a
mixture of consistency and enablement, [23, Definition 1.1.1], while causal automata run on
what one might call “pure causality”. In [8] we show that Winskel’s general event structures
have a natural interpretation as geometric automata.

This general result allows us to return to the problem of confluent trace sets. We now have
at our disposal the representation theorem for event structures] in Winskel’s thesis, [&, 24].
From a confluent trace set we construct an appropriate domain which satisfies the conditions
of Winskel’s theorem. The finiteness restrictions are crucial here. Winskel’s representation
theorem gives an event structure. Our interpretation of event structures then unravels the
causal relationships and gives a geometric automaton which only uses {AND, OR} causality.
We hope to give precise details of this argument in a future paper.

The connection between causal automata and Petri nets is also important. We feel that
nets must contain, perhaps even conceal, all manner of causal relationships. Yakovlev, [25], has
studied place/transition nets from an order-theoretic standpoint and has found that persistent
nets give rise to {AND, OR} - semi-modular - behaviour. It is interesting to note that the
motivation for this study comes from the design of so-called speed independent circuits. Semi-
modular phenomena were first studied by David Muller in his pioneering investigations into
the design of asynchronous hardware, [4, Chapter 10]. The current resurgence of interest in
the design of self-timed systems, [21], suggests that the study of {AND, OR} causality is timely.

1.5 Summary and acknowledgements

The proof of Theorem [.Z falls into two distinct parts. The heart of the argument is in §3 where
the result is proved first for event traces. The labelling, and the property of determinism, are
not relevant at this point. An important result in §3 is Lemma B.1] which identifies the crucial
characteristic property of {AND, OR} causality. In §4 these initial results are used to prove the
first part of the theorem. It is here that the assumption of determinism becomes essential. §5
contains the proof of the second part of Theorem [.7. The details in §4 and §5 have a different
flavour to those in §3 and largely concern the properties of strings and of labellings rather than
of {AND, OR} causality. §2 contains the initial definitions and some preparatory material on
traces and confluence.

The work described here was undertaken as part of project VESPA at Hewlett-Packard’s
Information Systems Centre in Bristol, England. I am grateful to Claudio Condini and Miranda
Mowbray for spotting various fauz pas. Thanks are also due to Gérard Boudol, Matthew
Hennessy, Ursula Martin, Robin Milner, Wolfgang Reisig, Chris Tofts and Alexandre Yakovlev
for encouragement and suggestions. The comments of three anonymous referees, which led
to several corrections and improvements in presentation, are gratefully acknowledged. Any
indiscretions that remain are entirely my responsibility.

3The significance of which was pointed out to us by an anonymous ICALP referee.



2 Causal automata

This section covers the initial definitions and Lemmas needed for the proof of Theorem [.2.
We begin by recalling the definition given in the Introduction.

Definition 2.1 A causal automaton is a triple (E, p,f) where
e I is a finite set of events;
e p: E — BE is a function to the free Boolean algebra, BE, generated by E;

o (. E — Ais alabelling function to some set A of actions.

We shall refer to an automaton by its set, F, of events and where necessary use subscripts,
pe and £g, to make it clear which causal automaton is being referred to.

Definition 2.2 If S is some set of Boolean operations then E is an S-automaton if Ve € E,
p(e) can be expressed using only operations from the set S together with the constant T.

A valuation, v, of a set E is a function v : E — {T,F} which assigns a truth value to each
element of E. Note that any valuation on E lifts uniquely to a function, BE — {T,F}, which
is also denoted v. It is convenient to think of valuations as characteristic functions and to
identify v with the subset of elements {e € E | v(e) = T}. With this identification, v; C v9
indicates that if v1(e) = T, then va(e) = T. Let vg be the valuation which corresponds to the
empty subset of E so that vg(e) =F for all e € E.

Definition 2.3 If (E, p, ) is a causal automaton, the event e € E is enabled if ve(p(e)) = T.

The idea of enabled events permits the definition of an operational semantics for causal
automata.

Definition 2.4 If E1, Es are causal automata and e € Ey is an event, then F; £, Ey if, and
only if,

e ¢ is enabled in Ey;

o By =FE; —{e};

o Vx € Ey pp,(x) = pr,(z)[e — T| (substitute T for e in pg,(x));
o Vr € FEy lp,(x)="Lg (z).

If « € A is an action, then By - FEy if, and only if, By — E, for some event e with
l(e) = a.

The event and action relations defined above extend in the usual way to relations over
strings of events or strings of actions. If E/, F' are causal automata and s = ejes---e, € E* is
a string of events, then F == F if there are causal automata Ej, - - -, F,, such that

E=F *%“Ep-%...%E =F

It is always true that E == E. If E == F for some s € E* then s is said to be an event trace
of E. The set of all event traces is tracesg(FE).



Similar definitions hold for strings of actions. If F is a causal automaton over the labels
A, then o0 € A* is an action trace of E if for some event trace s = e;---¢e, we have o =
{(e1)---L(ey). If also E == F then we use the notation £ == F for the corresponding action
trace. The set of action traces is tracesa(F). In general we shall use Latin letters s,t,-- - for
event traces and Greek letters o, 7, - - - for action traces.

An event trace, in contrast to an action trace, is always a pure string: each event appears
at most once in the string. Event traces hence give rise to subsets of events or to valuations.
If s € tracesg(E), let vs denote the valuation corresponding to the subset of events in s.

_ T if e appears in s
vsle) = { F  otherwise.

Lemma 2.1 Suppose that E == F for some event trace s of E. The event a € F is enabled
in F if, and only if, vs(pp(a)) =T in E.

Proof: If vr denotes the all-FALSE valuation on F, it is clear from the operational semantics
that vg(pr(a)) = vs(pr(a)). The result follows.
QED

Recall that a trace set, T', over some alphabet A is a subset T C A* such that ¢ € T and
if st € T then s € T. It is clear that both tracesg(E) and tracesa(F) are trace sets. If T is a
trace set and s € T, then T'/s denotes “I" after s”, in the sense of [T, §1.8.3].

T/s={t|steT}.

The symbol“/” is being used in two different senses in this paper depending on whether the
left operand is a trace or a trace set. Both usages are sanctioned by custom and we hope
that no confusion will result. 7'/s is undefined if s ¢ T. Note that T//e = T and that
T/8182 = (T/Sl)/SQ.

Lemma 2.2 If E is a causal automaton and E = F for some event trace s of E then
tracesg(F') = tracesg(E)/s.

Proof: It is clear that tracesg(F) C tracesg(F)/s. For the other direction suppose that
t € tracesg(FE)/s so that st € tracesg(FE). Then by definition, £ == E; =L B, Comparing
Fy and F, we see that they have both been obtained from E by removing the same set of
events; namely, those events which appear in the string s. Similarly, the causality functions of
both automata are obtained from that of E by replacing the same generators with T. Finally,
the labelling functions are clearly identical. So Fy = F' and t € tracesg(F') as required.

QED

The excess operation defined in §1.1 has many interesting properties. The following are
particularly useful, [I6, §11.3].

s/t = s if s and t have no elements in common
S/tltg = (S/tl)/tQ
sis2/t = (s1/t).(s2/(t/s1))
Following the precedent of [I6], we leave the proofs as exercises for the reader. In reasoning

about the excess operation, it is useful to be able to count the number of occurrences of a
particular element in the string. Multisets provide a convenient language for this.



Definition 2.5 A multiset, f, over the set A is a function, f : A — N, from A to the natural
numbers N. The set of multisets over A is denoted AN.

A string s € A gives rise to a multiset, [s]|, over A as shown below.

[€](a) = 0 Va€cA
[ @ +1 ifb=a
[bs](a) = { [s](a) otherwise.

A multiset f € AN is a set if f(a) = 0 or 1 for all @ € A. Note that a string s € A* is pure
if, and only if [s] is a set. Furthermore, s and ¢ are permutations of each other if, and only if,
[s] = [t]. It is convenient to regard elements of A as strings of length 1, so that if a € A then
[a] is the multiset having the value 1 at a and 0 everywhere else. The usual operations and
relations on numbers (+, <, ---) lift pointwise to operations on multisets.

The following result collects together some elementary properties of strings which will be
used later. It makes clear in what sense the operation s/t is one of “excess”.

Lemma 2.3 If s,t € A* are traces and a,b € A then
1. [st] = [s]+][t]

2 :{V1 i 1Hb) =0

t] — [b] otherwise

—

3 Wm@::{g@—M@ if [s)(a) > [f](a)

otherwise
4. [s(t/s)] = [t(s/1)]

Proof: 1. By induction over the length of s. If s = € the result holds immediately. Suppose
that s = bs; and the result holds for s;. Choose a € A. If a = b then by the definition of the
bracket function [bsit](a) = [s1t](a)+1 while [bs1](a) = [s1](a)+1. By the inductive hypothesis
[s1t](a) = [s1](a) + [t](a). Hence, [st](a) = [s](a) + [t](a). If @ # b then [bsit](a) = [s1t](a) and
[bs1](a) = [s1](a) and the result follows similarly. This proves 1.

2. First suppose that b does not appear in ¢. In other words that [¢](b) = 0. Then ¢ and b have
no element in common and by a remark made above, ¢/b = t. Hence, [t/b] = [t] as required.
Now suppose that b does appear in t. Then we can write ¢ in the form ubv where we may
suppose that b does not appear in u. Note that v may be the empty string. It follows that
t/b=wubv/b= (u/b).(bv/(b/u)). But b and u have no elements in common and so u/b = u and
b/u = b. Hence t/b = u(bv/b) = uv. So we have [t/b] = [u] + [v] while [t] = [u] + [b] + [v]. Tt
follows that [t/b] = [t] — [b] as required. This proves 2.

3. We proceed by induction over the length of t. If ¢ = ¢ then s/t = s for any s and the result
is easily seen to hold. If ¢ = b where b € A then the result follows from part 2. This starts the
induction off. Now assume that ¢ = t1t2, where neither ¢; nor to is the empty string, and the
result holds for ¢; and to separately, with any s as the left hand argument.

Suppose first that [s](a) > [t](a). Then since [t] = [t1] + [t2] by part I, we must have
[s](a) > [t1](a). Therefore, by the inductive hypothesis for ¢i, [s/t1](a) = [s](a) — [t1](a).
Furthermore, [s/t1](a) > [t2](a). Hence by the inductive hypothesis for 9,

[(s/t1)/12)(a) = [s/t1](a) = [t2](a) = [s](a) = [t1](a) = [t2](a) = [s](a) — [t](a)-
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The required result follows since s/t = (s/t1)/ta.

Now suppose that [s](a) < [t](a). If [s](a) < [t1](a), then by the inductive hypothesis for
t1, [s/t1](a) = 0 and clearly [s/t;](a) < [t2](a). Hence by the inductive hypothesis for t,
[s/t](a) = 0 as required. If on the other hand, [s|(a) > [t1](a) then by the inductive hypothesis
for t1, [s/t1](a) = [s](a) — [t1](a). But, [s/ti](a) # [t2](a) for otherwise [s](a) > [t](a). So by
the inductive hypothesis for to, [(s/t1)/t2](a) = 0 and so [s/t](a) = 0 as required.

4. Choose a € A and suppose that [s](a) > [t](a). Then, by part 3, [s(t/s)](a) = [s](a) + 0
while [£(3/1)](a) = [£)(@) +[s)(@) — [1](a) = [5](a). Hence [s(t/5)](a) = [t(s/£)](a). By symmetry
of s and ¢ the result follows.

QED

We can now prove some elementary properties of confluent trace sets.

Lemma 2.4 Suppose that T is a confluent trace set. The following statements are true.
1. Ift € T, then T/t is also confluent.

2. If p,q e T and [p] = [q] then T/p="T/q.

Proof: 1. Choose r,s € T//t. Then tr,ts € T and since T is confluent tr(ts/tr) € T. But
ts/tr = (ts/t)/r = ((t/t).(s/(t/t)))/r = s/r since, by Lemma R.3(3), t/t = . It follows that
r(s/r) € T/t and hence T'/t is confluent.

2. If [p] = [q] then it follows from Lemma R.3(3) that p/q¢ =¢q/p =¢. If w € T/p then pu € T
and since T is confluent, ¢(pu/q) is also in T. But, pu/q = (p/q)(u/(q/p)) = u. Hence qu € T
and u € T'/q. So T'/p C T/q and by symmetry, T'/p = T /q as required.

QED

This completes the preparatory material. In the next section we begin the proof of the
main results.

3 AND, OR causality

We begin this section with a simple observation about Boolean expressions built up using only
AND and OR.

Lemma 3.1 Suppose that p € BE is an element of the free Boolean algebra over E other than
F. p can be expressed using only the operations T, A and V if, and only if, for any valuations
v1,v9 such that vi C vy and vi(p) = T, it follows that va(p) = T.

Proof: Suppose that p is expressed using only the operations T, A and V and suppose given
a pair of valuations such that v;1 C v9 and v1(p) = T. Since F < T in the partial order of the
Boolean algebra and both A and V are monotonic, it follows immediately that v1(p) < va(p).
Hence v2(p) = T as required.

Now suppose that p € BFE satisfies the valuation property in the statement of the Lemma.
Define a valuation w to be minimal with respect to p if w(p) = T but v(p) = F for any v C w.
Since p # F, minimal valuations must exist.

It may happen that vg is a minimal valuation for p. If v is any valuation, then v(p) = T
since vg C v. Hence p = T and there is nothing to prove.
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So assume that vg is not a minimal valuation for p. Note that any minimal valuation w
must then have some e € E such that w(e) = T. Let {w;,wa, -, w,} be the set of minimal
valuations of p and let e vary over elements of . Define

o=V CA ()

1<i<n w;(e)=T

which is well defined by the preceding remark. o is expressed in terms of the generators of
BE using only the operations A and V. We claim that p = ¢ in BE. It suffices to show that
v(p) = v(o) for any valuation v.

Suppose given a valuation v. If v(p) = T then there must exist a (not necessarily unique)
minimal valuation w; of p such that w; C v. Butife € E and wj(e) = T, then clearly v(e) = T.
Hence, v(Ay,()=7(€)) = T and so v(c) = T.

Now suppose that v(o) = T. Then for some 1 < j < n, v(Ay,)=7(€)) = T. Hence, for
each e € F such that w;(e) = T we must have v(e) = T. In other words, w; C v. But,
w;(p) = T and so, by the valuation property, v(p) = T. Hence p = o. This completes the
proof.

QED

We have spelt out this proof in some detail because the valuation behaviour is the only
property of {A, V}-causality which is subsequently used. It is therefore important to know that
this property characterises {A, V}-causalityf].

We shall say that a trace set is pure if every string in the set is pure; the event traces of
any causal automaton always form a pure trace set.

Proposition 3.1 If E is a {A, V}-automaton then tracesg(E) is a (finite) pure confluent trace
set.

Proof: Choose s,t € tracesg(E). We have to show that ¢(s/t) € tracesg(E). The proof is
by induction on the length of s. If s = ¢ then t(s/t) = ¢t and there is nothing to prove. So
suppose that s = sja and assume that t(s;/t) has been shown to be an event trace of E. We
then have s/t = (s1/t).(a/(t/s1)). If a appears in t/s; then a/(t/s1) = ¢ and s/t = s1/t. By
the inductive hypothesis t(s1/t) € tracesg(E) and there is nothing more to do.

So assume that a does not appear in t/s; in which case s/t = (s1/t)a. Since event traces
are pure, it is clear that [s;](a) = 0. By Lemma P.3(3), [t](a) = 0 for otherwise a would appear
in t/s;. Furthermore, again by Lemma R.3(3), [s1/t] < [s1] and so [s1/t](a) = 0. It follows
that a does not appear in the trace t(s1/t).

By the inductive hypothesis, there is an automaton F' such that E t(S:1>/t) F. Evidently,
a € F. All we have to do is to show that a is actually enabled in F'. By Lemma 1], this
amounts to showing that vy, /) (pe(a)) = T.

Since s is also an event trace, there is an automaton G such that E =% G. By Lemma @,
we know that a € tracesg(G) and must hence be enabled in G. By Lemma B.1], v, (pr(a)) = T.

But now, from Lemma 2.3(4), [s1] < [t(s1/t)]. The events which appear in each of these
traces are precisely those which have the value T in the corresponding valuations. Hence,
vs; € Vy(s, /¢y and the required result follows immediately from Lemma B.1.

QED

“The significance and importance of this result becomes much clearer in the infinite case, [5].
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The next result is a converse to Proposition B.. It it the central part of the proof of
Theorem [[2. Since we are not at present interested in action traces, the labellings on our
causal automata are irrelevant and we shall assume that they are always the identity function.

Proposition 3.2 IfT is a finite pure confluent trace set then there exists a {A,V }-automaton,
E, such that tracesg(E) =T.

Proof: It is convenient for the proof to enlarge the conclusions of the Proposition. Suppose
that A is the set of all elements which appear in the strings of T, so that T' C A* and A is the
smallest set with this property. What we shall prove is that if T" is pure and confluent then
there is a {A, V}-automaton, of the specific form (A4, p), such that tracesg(A) =T

The proof is by induction over the size of the trace set T'. If T' = {e¢} then the empty causal
automaton has both the right form and the right traces. This starts off the induction. Now
choose T, a non-trivial pure confluent trace set and suppose that all pure confluent trace sets of
strictly smaller size have been shown to fulfil the conclusion stated in the previous paragraph.
Let e1,e9,- -+, e, be all the events which appear initially on some string of T'. In other words,
eie€T forl1 <i<nandifteT and t # ¢ then t = ¢;s for some i. By Lemma P.4(1), T'/e; is
a confluent trace set which is clearly pure and of strictly smaller size to 1. By the inductive
hypothesis there exists a {A, V}-automaton A; such that tracesg(4;) = T'/e;. We shall use p;
to denote the causality function for the i’th automaton, p; : A; — BA,.

Let fi1, fa,- -+, fm be the elements other than ey, es,--- e, which appear in strings of T
and, as above, let

A:{61,62,"',€n,f1,f2,"',fm}-

We need to construct a causal automaton on this specific set of events.

It is clear by the purity of T that the event e; does not appear on any string in 7'/e;.
However, by confluence of T, it is easy to see that every other event in A must appear in
some string of T'/e;. It follows from the expanded inductive hypothesis that A; = A — {e;}.
In particular, p;(f;) is defined for each 1 < i < mn and 1 < j < m and we may take it that
pi(fj) € BA. This allows us to define the following {A, V}-automaton (A4, p) of the required
form.

ple;) = T 1<i<n
P(fj) = Vlgign(ei /\Pi(fj)) 1<j<m.
We claim that tracesg(A) =T.
The first point to note is that the enabled events of A are precisely e1, es, - - -, ey, for clearly

ve(p(fj)) = F for any 1 < j < m. Hence there are causal automata B;, for 1 <14 < n, such that
A =5 B;. Moreover, it is clear that B; and A; have the same sets of events, namely A — {ei}.
We would be done if it were true that B; = A; as causal automata. It is important to realise
that this need not be the case. However, what we shall show is that tracesg(B;) = tracesg(A4;).
It follows easily from Lemma P9 that this is sufficient to show tracesg(A) = T. The remainder
of the proof is hence concerned with showing that tracesg(B;) = tracesg(A;). Since the proof
is the same for each index 4 it will be convenient and no less general to do the case ¢ = 1. This
will cut down on the number of indices which appear in the text.

We shall start by showing tracesg(A1) C tracesg(By). The proof is by induction on the
length of strings in tracesg(A1). It is clear that € € tracesg(Bi) which starts off the induction.
So suppose that ¢t € tracesg(A;) is a non-empty string and that all strings in tracesg(A;) of
strictly smaller length have been shown to be in tracesg(B;). We can write t = se where
e € A; is an event and s € tracesg(Aj) is a string of strictly smaller length than ¢. By the
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inductive hypothesis s € tracesg(B1) and e1s € tracesg(A). If e is one of the e;, it will be
permanently enabled and clearly se € tracesg(B1) and there is nothing to prove. So assume
that e is one of the f;. From the description of the automaton A given above, it is easy to see
that

vers(p(e)) = vs(pr(e)) V (--+)

where the exact nature of the omitted elements is not relevant.

Now by assumption, se € tracesg(A41), and so by Lemma B, vs(pi(e)) = T. It follows
immediately that v, s(p(e)) = T. Hence by Lemma .1 e; se € tracesg(A) and so by Lemma P.3,
t = se € tracesg(By). If follows by induction that tracesg(A1) C tracesg(Bi).

It remains to prove the opposite inclusion, tracesg(B1) C tracesg(A1). As before the proof
is by induction on the length of strings. Suppose that t € tracesg(B1) is a non-empty string
and all strings of strictly smaller length in tracesg(Bj) have been shown to be in tracesg(A;).
We may write t = se where e € By and s € tracesg(By) is a string of strictly smaller length to
which the inductive hypothesis applies. Hence s € tracesg(A;). Suppose first that e is one of
the e;. Because T is confluent, e € T'/e; and hence e must be enabled in A;. By Lemma B.1],
it must be the case that pi(e) = T. Therefore e is permanently enabled in A; and clearly
se € tracesg(Ar).

Now suppose that e is one of the f;. Because se € tracesg(B1), we know from Lemma P.]]
that ve,s(p(e)) = T in BA. Note that the Boolean expression p;(e) € BA; does not involve the
generator e;. Furthermore, if e; appears in s then by purity we may write (e1s)/e; = e1(s/e;).
This allows us to simplify the expression for p(e) as shown below.

vers(p(e)) = vs(pi(e)) vV ( V' ver(sen (pile)) )
[s(

ei)=1

Hence, either vs(p1(e)) = T or there must be some k, with [s](ex) = 1, such that v, /e, )(pr(€)) =
T in Ak

If the former then, by Lemma P.1], se € tracesg(A;) and we are done. So suppose the latter.
Since e s and ey, are both in T, and T is confluent, it follows that ey ((e15)/er) = ere1(s/ex) € T.
Hence, ei(s/ex) € T/ey, and so by Lemma P.1 applied to Ay we see that ej(s/ex)e € T'/e. It
follows that egeq(s/ex)e € T which we may rewrite as saying that e € T'/(ere1(s/ex)).

Note that ejs(ex/(e1s)) = e1s, since ey appears in s, and so by Lemma B.3(4), [e1s] =
[exe1(s/er)]. Since T is confluent, Lemma B.4(2) tells us that e € T'/(e1s). In other words,
se € T'/e;. Hence t € tracesg(A;) as required. It follows by induction that tracesg(B1) C
tracesg(Ay).

We have shown that for each 1 < i < n, T'/e; = tracesg(B;) and it follows as remarked
above that T' = tracesg(A). Since A is a {A, V}-automaton on the correct set of events, the
Proposition follows by induction.

QED

4 Deterministic automata

We now consider how to extend the results above to action traces. The first point to note
is that Proposition B. is false, as stated, if action traces are used in place of event traces.
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Consider the following {A, V}-automaton.

C6 =

o~ 4
22w

QU O o e

It is easy to see that o and a~y are action traces of C6. But ay/aff = 7 and the string
afy = afB(ay/af) is not an action trace of C'6. Hence tracesa(C6) is not confluent.

The missing ingredient is determinism. The following definition is a natural extension of
Vaandrager’s definition, [22, §3.6], of determinism in prime event structures.

Definition 4.1 A causal automaton E is deterministic if, whenever E == F for some event
trace s of E, then all enabled events in F' have distinct labels.

If F' does have two enabled events with the same label, a, and o is the action trace corre-
sponding to s, then we may have £ == E; and E == Fj where E; and Ej are distinct. This
is contrary to the intuition for determinism presented in §1.1.

The labelling function £ of an automaton A gives rise to a function on traces

0" tracesg(E) — tracesa(E).

This is, of course, always a surjection: every action trace arises from some underlying event
trace. It is not in general a bijection. However, the reader will easily see that the following
Lemma is merely a restatement of the definition above.

Lemma 4.1 An automaton (E,p,l) is deterministic if, and only if, £* is a bijection.

For {A,V}-automata we can say rather more. It will be convenient to allow ¢* to act, in
the obvious way, on elements of E* which are not necessarily event traces of . Note that,
with this proviso, £* always commutes with juxtaposition: ¢*(st) = £*(s)¢*(t).

Lemma 4.2 Suppose the (E, p,{) is an {A\,V}-automaton. E is deterministic if, and only if,
* commutes with excess. (It is not asserted, and it is not in general true, that tracesg(E) is
closed under the excess operation.)

Proof: Suppose first that E is deterministic. Choose s,t € tracesg(F). We have to show that
0*(s/t) = £*(s)/*(t). The proof is by induction on the length of the second argument ¢. If
t = ¢ then s/e = s and £*(t) = € so clearly £*(s/t) = £*(s) = £*(s)/*(1).

Now suppose that ¢ = a where a is an event in E and let ¢(a) = a. There are two cases
according as [s](a) = 0 or [s](a) > 0. Suppose the first, so that a does not appear in s.

We claim that then o does not appear in £*(s). Suppose on the contrary that it does and
write ¢*(s) = p.c.v where [p](a) = 0. We can similarly write s = m.e.n where £*(m) = pu,
l(e) = a and ¢*(n) = v. It is clear that a does not appear in m for otherwise o would
necessarily appear in u. Since me € tracesg(FE) it follows from Lemma P that vy, (p(e)) = T.
Also ve(p(a)) = T since a is enabled in E. But vg C v, and so, by Lemma B, v, (p(a)) = T.
Hence, by Lemma P.1 again, if E == F then both a and e are enabled in F'. But £(a) = {(e) = o
which contradicts the fact that E is deterministic. This shows that a does not appear in
0*(s). Tt follows from Lemma P.3J(2) that both s/a = s and ¢*(s)/¢*(a) = ¢*(s). Hence,
0*(s/a) = £*(s)/0*(a) as required.
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Now suppose that a does appear in s. We may write s = m.a.n where [m](a) = 0. Then
0*(s) = £*(m).a.l*(n) and by the preceding paragraph [¢*(m)](«) = 0. It is then easy to
see that s/a = mn and, by a similar argument, that ¢*(s)/a = £*(m)¢*(n). It follows that
0*(s/a) = £*(s)/0*(a) as required.

This argument suffices to start off the induction. Suppose now that we have ¢ € tracesg(E)
of length greater than 1 and that the result has been shown to hold (for arbitrary first argument)
for all event traces of length strictly less than t. We can write t = t1to where both ¢; and
to have length strictly less than ¢. Then £*(s/(t1t2)) = €*((s/t1)/ta) = €*(s/t1)/€*(t2) by the
inductive hypothesis applied to to. Proceeding further, by the inductive hypothesis applied
to t1, £*(s/t1) = €*(s)/0*(t1). Hence, £*(s/t) = (€*(s)/€*(t1))/*(t2) = €*(s)/(£*(t1)¢*(t2)) =
0*(s)/*(t) as required. It follows by induction that ¢* commutes with excess.

For the other direction suppose that £* commutes with excess. Suppose further that there
are s,t € tracesg(F) for which £*(s) = £*(t) but s # t.

For any string u let ug, where k > 0, denote the prefix of u of length k and let |u| denote
the length of the string u. Note that ¢*(s;) = ¢*(tx) for 0 < k < |s| and that |s| = |t|. Now
there must be some ¢ with 1 < ¢ < |s| such that [s;] # [t;] for if not it is easy to show by
induction that s = t.

Consider s;/t;. If this were the empty string, ¢, then by Lemma P.3, part 3, [s;] < [t;]
and since s; and t; have the same length, this would force [s;] = [t;]. Hence s;/t; # . But,
however, £*(s;) = £*(t;) and so £*(s;)/0*(t;) = e. It follows that £*(s;/t;) # €*(s;)/¢*(t;) which
contradicts the assumption that £* commutes with excess. It follows that £* must be bijective
and hence, by Lemma E1], that £ must be deterministic.

QED

It is worth pointing out that the second part of the proof above does not use the fact
that E is a {A,V}-automaton. Note that there are deterministic automata, which are not
{A, V}-automata, for which ¢* does not commute with excess. For instance, the automaton

a b=>e «
Cir=|b T G
e b o

has the following sets of traces:

tracesg(C7) = {e,a,b,ab,be,abe,bea},
tracesp(C7) = {e,a,f,af, fa,afa, faat.

It is clear that £* is bijective since the trace sets have the same size. Hence, by Lemma B.1],
C'7 is deterministic. However, ¢*(ab/be) = ¢*(a) = «, while £*(ab)/¢*(be) = a3/Ba = e. So £*
does not commute with excess.

It is now a simple matter to prove the first part of Theorem [[.Z.

Theorem 4.1 If E is a deterministic {A,V}-automaton then tracesa(E) is a finite confluent
trace set.

Proof: Choose action traces u,v € tracesa(E). Let m,n € tracesg(E) be event traces such
that ¢*(m) = p and £*(n) = v. By Proposition B.1], tracesg(E) is confluent and so certainly
m(n/m) € tracesg(E). Hence £*(m(n/m)) is an action trace. But now Lemma f.3 shows that
(m(n/m)) = p(v/w). So u(v/un) € tracesp(F) and tracesa(FE) is confluent. This completes
the proof.

QED
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5 Numbered traces

An arbitrary confluent set is not in general pure. In this section we present a method for
constructing a pure trace set from any given trace set. The main result is that this method
preserves confluence. This allows us to use Proposition B.2 to prove the second part of Theo-
rem [[.9. Let N* denote the positive natural numbers.

Definition 5.1 Given a set A, the numbering function, p : A* x A* — (A x N1T)* is given
inductively by the equations

p(re) = €
p(r,sa) = p(r,s)(a,[rl(a) + [s](a) + 1) .

We shall use the short-hand: p,(s) = u(r,s) and p(s) = pe(s). It is easy to see that if
[p] = [g] then p, = g, so that p factors over AN x A*. As an example of a numbered string,
if t = aabacaccd, then p(t) is

(a,1)(a,2)(b,1)(a,3)(c,1)(a,4)(c,2)(c,3)(b,2).

The effect of the first argument is to translate the numbering: if » = bebece then p,.(t) is

(a,1)(a,2)(b,3)(a, 3)(c, 4)(a, 4)(c, 5)(c, 6) (b, 4).

Unlike t, both these strings are pure. The numbering function satisfies many interesting
identities and the next result collects together those which are of immediate benefit to us. To
avoid unnecessary complication, we have chosen not to state these in their most general form.

Lemma 5.1 Let A be a set and r,s € A* be strings over A. The following statements are
true.

1. u(s))(a, k) = { 0 k> lslla)

1 otherwise
2. u(rs) = p(r)p (s).
3. po(r/s) = n(r)/u(s).
u(r(s/r)) = u(r) (u(s)/n(r)).

Proof: 1. By induction on the length of s. If s = ¢ then from the definition u(s) =e. Hence
[1(s)](a,k) = 0. Since k > 0 by convention, certainly k& > [s](a) and so the result is true.
Now suppose that s € A* is non-empty and the result has been shown to hold for all strings
of length strictly less than s. We can write s = tb where b € A and the inductive hypothesis
applies to t. Then, by definition, u(s) = u(t).(b, [t](b) + 1).

Consider the two cases separately. If k > [s](a) then certainly & > [t](a) and so by the
inductive hypothesis [u(t)](a, k) = 0. Hence [u(s)](a, k) = [(b, [t](b) + 1)](a, k). If a # b then
this is certainly zero. If a = b then still & > [s](a) = [t](a) + 1. Hence [,u(s)](a, k) = 0 as
required.

Now suppose k < [s](a). If also k < [t](a) then by the inductive hypothesis [u(t)](a, k) =1
Since (b, [t](b)+1) # (a, k) it follows that [(s)](a, k) = 1 as required. If, on the other hand, k& >
[t](a) then again by the inductive hypothesis [u(¢)](a, k) = 0. However, [s](a) = [t](a) + [b](a),

— —
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so it must be the case that a = b and k = [s](a). But then (b, [t](b) + 1) = (a,k) and so
[1(s)](a, k) =1 as required.

2. By induction on the length of s. If s = € then the result is easily seen to hold. So suppose
that s is a non-empty string and that the result has been shown to hold for all strings of
strictly smaller length and arbitrary r. We may write s = ta where a € A and the inductive
hypothesis applies to t. Then, u(rs) = p((rt)a) = w(r)u-(t)(a,[rt](a) + 1). On the other
hand, by definition, wu,(ta) = p.(t).(a,[r](a) + [t](a) + 1). It follows from Lemma P.3(1) that

(rs) = p(r).pir(s).

3. By induction on the length of r. If r = ¢ then the result is easily seen to hold. So suppose
that r is a non-empty string and that the result holds for all strings of length strictly less than
r and arbitrary s. We may write 7 = ta where a € A and the inductive hypothesis applies to
t. Since ta/s = (t/s)(a/(s/t)), it is easy to see from Lemma P.3(3) that

tafs = { (t/)a it [s)(a) < [f](a)

(t/s) otherwise
We shall consider each of these cases separately. First suppose that [s](a) < [t](a). Then,

ps(ta/s) = ps((t/s)a) = (u(t)/u(s))(a, [s](a) + [t/s](a) +1).

On the other hand,
p(ta)/p(s) = pu(t)(a, [t](a) + 1)/p(s)

)(a, [{]
But, by part 1, [u(s)](a [f)(a)+1) = 0 since [f](a)+1 > [s](a). Similarly, [u(t)](a, (@) +1) = 0
since [t](a) + 1 > [t](a). Hence, [u(s)](a, [t](a) + 1) < [u(t)](a, [t](a) + 1). So by the previous
paragraph, applied to numbered strings, we see that ,u(ta)/,u( ) = (u(t)/p(s))(a,[t](a) + 1).
Finally, by Lemma B.3(3), [t/s](a) = [t](a) — [s](a). So ps(r/s) = u(r)/u(s) as required.

Now suppose that [s](a) > [t](a). Then us(ta/s) = ,us(t/s) p(t)/u(s). Also p(ta)/p(s) =
(n(®)(a, [t](a) +1))/p(s). But now, by part 1, [u(s)](a, [t](a) +1) = 1 since [t](a) + 1 < [s](a)
and similarly [u(t)](a, [t](a) + 1) = 0. Hence, [u(s)](a [t](a) + 1) > [u(t)](a,[t](a) + 1) and,
as remarked above, this shows that (u(t)(a,[t](a) +1))/u(s) = u(t)/u(s). Hence ps(r/s) =
w(r)/u(s) as required.

4. By parts 2 and 8, u(r(s/r) = p(r)p(s/r) = u(r)(pa(s) /u(r).

(a,

QED

Let m : AxNT — A be projection on to the first component of a numbered pair: 7(a, k) = a
This extends in the usual way to a function on strings: 7* : (A x N1T)* — A*. Tt is easy to
see from the definition of the numbering function that 7*(u,(s)) = s. We can now prove the
result which we have been working towards.

Theorem 5.1 IfT is a finite confluent trace set, there exists a deterministic { A,V }-automaton,
E, such that tracespa(E) =T.

Proof: Let A be the set of elements which appear in the traces of T and let u(7T) C (Ax NT)*
be the corresponding set of numbered traces: p(7') = {u(t) such that ¢t € T'}. It follows from
Lemma p.1(1) that x(T) is pure and from Lemma p.1(4) that u(7') is confluent. Hence, by
Proposition B.Z, there exists a {A, V}-automaton E such that tracesg(E) = u(T).

In the construction of E the labelling function was not relevant and was taken to be the
identity. We are at liberty to provide an alternative. It is clear that £ C AxNT so we can take
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(g = m|g, the restriction to E of the projection function defined above. If u(t) € tracesg(FE)
then ((u(t)) = m*(u(t)) = t. It follows that tracesa(E) = T. It is also clear that ¢}, is
bijective and hence, by Lemma (1], that F is deterministic. The result follows.

QED

This completes the proof of Theorem [2.

6 Conclusion

We have introduced causal automata, a formalism based on a syntactic approach to causality,
and we have used it to shed light upon Milner’s notion of confluence in CCS. The formalism
takes a less impoverished view of causality than is customary in models based upon partial
orders. We feel that it has the virtue of simplicity and that the operational behaviour of an
automaton is particularly easy to understand, at least at a superficial level. A more systematic
study of causality which tackles the difficulties with infinite sets of events will appear in a
sequel to the present paper, [R].
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