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1 Introduction

Mathematical models of intra-cellular biological systems are often based on systems of nonlinear
ordinary differential equations (ODEs). Recent studies of some signalling cascades using both com-
putational analysis of an ODE model and experimental manipulation of the signalling pathway
have revealed the presence of multiple fixed points, [3, 7, 21]. While biological systems evidently
exhibit more complex behaviours, such as oscillations, [18], the significance of fixed points in biolog-
ical dynamics has been a recurring theme in the literature at least as far back as Max Delbrück’s
observations on “cytoplasmic inheritance”, [9, 24, 33].

It would be helpful if there were mathematical theorems that tell us whether a relevant system
of ODEs has any fixed points. Most mathematicians would regard this as hopeless, given the
nonlinearity of the equations and the complexity of the systems. The biological studies referred
to above were all based on computational simulation. However, there are at least two contexts in
which potentially relevant mathematical results have been established. The first is the recent proof
by Christophe Soulé of René Thomas’ longstanding conjecture about multiple fixed points, [31, 32].
This result gives an elegant necessary condition for multiple nondegenerate fixed points of a system
of nonlinear ODEs. The second is Chemical Reaction Network Theory (CRNT), which establishes
several theorems about systems of nonlinear ODEs which describe the behaviour of reactor vessels
used in chemical engineering. These systems are derived from mass-action kinetics, which is probably
a more realistic assumption in chemical engineering than in biology (more about this below). In
these notes we discuss CRNT and leave the work of Soulé and Thomas for later consideration.

CRNT has been developed over the last 30 years, initially through the work of Horn and Jackson
and subsequently by Martin Feinberg and his students. The theory introduces new concepts, such
as the deficiency of a reaction network, and gives conditions on such networks for the existence,
uniqueness, multiplicity and stability of fixed points. These conclusions sometimes hold irrespective
of the values of the parameters in the system, which should be of interest to those who associate such
behaviour with biological robustness, [5, 34]. The deficiency 0 theorem is proved in the first four
lectures of [11] and draws on earlier work of Horn and Jackson, [22], and Feinberg and Horn, [16].
A discussion of this result with many examples, along with a similar discussion of the deficiency 1
theorem, is given in [12]. A proof of the deficiency 1 theorem is given in [14]. The SCL graph theorem
is proved in Paul Schlosser’s PhD thesis, [29], and the result is discussed in [30]. Algorithmic issues
are discussed in [13] and proofs are given in [15].

CRNT appears to be as little known among in-silico biologists as among mathematicians; I came
across it in Jim Bailey’s commentary, [4]. It is still unclear to what extent CRNT is directly
applicable to biological settings. Even if it is not, by understanding its mathematical basis we might
hope to derive other results that are more appropriate to biology. To that end, these notes are an
introduction to CRNT with proofs of all the steps leading to the deficiency 0 theorem. The results
discussed here are all taken from the various papers on CRNT cited above, although the emphasis,
and some of the details, are different.

The key insight of CRNT is that the apparent nonlinearity of the ODEs arising from mass-action
kinetics conceals a great deal of linearity. This arises from the underlying network of chemical
reactions, which define a directed graph on the complexes that participate in the chemical reactions.
The complexes are the multisets of chemical species which occur on the left and right hand sides of
each chemical reaction. The existence of this underlying structure limits the nonlinearity that can
appear, which is why the strong results of CRNT are possible. Working at the level of complexes
serves to disentangle the interactions between individual chemical species. Fixed points thereby fall
into two categories: those that arise at the level of complexes and those that arise from the way in
which different complexes contain the same chemical species. The deficiency of a network, which we
define in this paper as the dimension of a certain vector space (Definition 3.2), measures the extent
of the second possibility. However, one of the most interesting discoveries of CRNT has to do with
fixed points of the first kind. Whenever there is at least one such fixed point, all fixed points must
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be of that kind (Theorem 6.2), and, in this case, the fixed points are extremely rigid, with very nice
properties of uniqueness and asymptotic stability. The usual statement of the deficiency 0 theorem,
as in [12, Theorem 6.1.1], is misleading in this respect. It suggests that the nonexistence of fixed
points of the second kind and the nice rigidity properties are due to the deficiency being 0. This is
not the case. Deficiency 0 is only required to show the existence of some fixed point of the first kind.
Accordingly, we state the main result of these notes as Theorem 6.4 while §7 contains the simple
arguments needed to establish when a fixed point of the first kind exists.

Mass-action kinetics defines a labelling by positive numbers on the directed graph of complexes, cor-
responding to the rate constants of each reaction. There is an intimate relationship between labelled,
directed graphs and matrices, which is particularly significant when the matrices are nonnegative. It
should come as no surprise, therefore, that Perron-Frobenius theory plays an important role in the
dynamics, at least at the level of complexes. This is the key technical result of CRNT, Theorem 4.2,
and its proof occupies §4. The proof given in the CRNT literature avoids Perron-Frobenius theory
and is relegated to the Appendix of [16]. Some elementary aspects of convex analysis (separating
hyperplanes) and dynamical systems (Lyapunov functions) are needed in §6 but, for the most part,
amazingly, linear algebra is sufficient.

I am indebted to Martin Feinberg for very kindly sending me several reprints as well as much
unpublished material, on which I have relied in putting together these notes. I am also very grateful
to members of the Theory Reading Group at the Bauer Center, without whose perceptive and
persistent questions these notes would have been as garbled as the lectures which they endured.

2 Chemical reaction networks

A chemical reaction network is a finite set of reactions among a finite set of chemical species. The
customary symbolism is used to represent reactions. The following set of reactions constitutes a
network of 6 reactions among the 5 chemical species A,B,C,D,E.

A 2B-�

A+ C D

B + E

-�

��	@@I
(1)

The intuition behind this notation should be clear. From the first pair of reactions, one molecule
of species A is converted, reversibly, into two molecules of species B. Similarly, one molecule each
of A and C combine to make a single molecule of D, also reversibly, while D itself disintegrates
irreversibly into one molecule each of B and E. Finally, this same combination of B and E are able
to irreversibly make one molecule each of A and C.

A reaction network like (1) gives rise to a dynamical system, which describes how the state of the
network changes over time. The state is given by the concentrations of all the chemical species
in the network. Let R denote the reals, P the positive reals, P = {x ∈ R | x > 0}, and P the
nonnegative reals, P = P ∪ {0}. Let S denote the set of species, S = {A,B,C,D,E}, and consider
the vector of concentrations to lie in the vector space, RS , called the species space. Only nonnegative
concentrations are physically realistic. (It is possible for the concentration of some species to fall to
zero, corresponding to it being completely consumed in the reactions.)

Constructing a vector space as a space of functions on an index set gives a standard choice of basis,
corresponding to the characteristic functions of the singleton subsets. The CRNT literature uses
component notation rather than functional notation for elements of RS and we do the same here:
if c ∈ RS then cx will denote the value of c at the species x ∈ S in preference to c(x). We write
vectors as column vectors.
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The kinetics of the various reactions in the network determine the dynamics by specifying how dc/dt
varies with c. Under the assumption of mass-action, the rate at which a reaction proceeds (ie: the
rate of generation of the reaction products) is proportional to the product of the concentrations of the
reaction substrates. The constant of proportionality is a specified positive rate constant associated
to the reaction in question.

CRNT is able to draw some conclusions without assuming mass-action kinetics; see, for instance,
parts (i) and (ii) of the statement of the deficiency 0 theorem in [12, Theorem 6.1.1]. In its weakest
form a general kinetics associates a function to each reaction, which specifies a numerical rate for
each concentration vector in PS . The results for general kinetics are relatively minor in comparison
to those assuming mass-action and we shall not discuss them further here.

With the assumption of mass-action, the first pair of reactions in (1) make the following contributions
to the rate of formation of cA:

− (κA→2B)cA + (κ2B→A)c2B , (2)

where κA→2B ∈ P is the rate constant for A→ 2B and κ2B→A ∈ P is that for the reverse reaction.
The effect of these same reactions on the concentration of B must also take into account the different
stoichiometry: two molecules of B are produced or consumed for each molecule of A. Hence, the
contribution to dcB/dt is given by

2(κA→2B)cA − 2(κ2B→A)c2B .

By considering all the possible ways in which a given species is produced or consumed according to
(1), the dynamical evolution of the reaction network under mass-action kinetics can be described by

dcA/dt = −(κA→2B)cA + (κ2B→A)c2B − (κA+C→D)cAcC + (κD→A+C)cD + (κB+E→A+C)cBcE
dcB/dt = 2(κA→2B)cA − 2(κ2B→A)c2B + (κD→B+E)cD − (κB+E→A+C)cBcE
dcC/dt = −(κA+C→D)cAcC + (κD→A+C)cD + (κB+E→A+C)cBcE
dcD/dt = (κA+C→D)cAcC − (κD→A+C)cD − (κD→B+E)cD
dcE/dt = (κD→B+E)cD − (κB+E→A+C)cBcE .

(3)

Chemical engineers use models like (3) to describe what goes on inside a liquid or gas phase reactor
vessel. Mass-action kinetics appears to be a good assumption for a well-mixed reactor of macroscopic
proportions kept at a constant temperature. (Rate constants can very markedly with the ambient
temperature, [8, §1.5].) However, practical reactors possess other features which are not directly
represented in reaction networks like (1). Reactor vessels are usually open systems, in which there
is a continuous supply of fresh substrates and outflow of products. They may also contain solid
phase catalysts, which, although they participate in the reactions, are not extracted in the outflow.
Refinements like this can all be accommodated within CRNT; see [11, §2E] or [12, §4]. For instance,
the in-flow of a substrate can be modelled with a pseudo-reaction of the form 0→ A,

Biological systems suffer many further complexities, some of which appear to be accommodated
within CRNT. Experimental studies of biological systems like metabolic pathways are often carried
out by by buffering the concentration of certain substrates so that they remain approximately fixed
over the duration of the experiment. With mass-action kinetics, these fixed concentrations can be
incorporated into the rate constants of the reactions in which the substrates participate.

Enzymes play a catalytic role in biology. Biochemists usually describe the kinetics of enzyme catal-
ysed reactions by formulae which look much more complex than mass-action rules like (2). The
well-known Michaelis-Menten kinetics for a reaction A→ B, catalysed by an enzyme E,

dcB
dt

=
VmaxcA
KM + cA

,

is a rational, and not linear, function of the concentration cA. However, the Michaelis-Menten
formula is derived from the reaction network

A+ E ⇀↽ AE → B + E . (4)
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under mass-action, assuming that the transitional enzyme-substrate complex, AE, is in steady state,
cB is small and cE � cA, [8, §2.2]. Michaelis-Menten kinetics may hence be incorporated into the
CRNT framework by appropriately modifying the underlying reaction network.

It is clearly too much to hope that what works for a large, well-mixed, isothermal reactor will also
work, in general, for a biological “vessel”. Biological cells are small enough to be isothermal but
are neither macroscopic nor well-mixed. Some chemical species, such as calcium ions, are heavily
sequestered on membranes or otherwise localised, and their concentrations cannot be considered as
spatially homogeneous. Measured amounts of certain proteins in E. Coli have been found to be
as low as 10-100 molecules, [28], which should make anyone extremely uneasy about representing
concentrations as smooth functions of time. At this scale stochastic variation in molecule numbers
becomes important both within a single cell and from cell to cell. One of the most interesting
biological questions is how cells both exploit and subvert such stochastic variation in order to carry
out what appear to be very deterministic functions (such as collectively making an organism).
Neither theory nor experiment has yet come to grips with this at a fundamental level, despite some
pioneering efforts, [1, 10, 23, 25].

Notwithstanding these significant caveats, it appears there are situations when a chemical reaction
network model is a reasonable approximation which gives some insight into the underlying biology,
as in some of the studies cited in the Introduction. Hopefully, as we continue to build more models
of cellular behaviour we will begin to understand better what “a reasonable approximation” means!

The system (3) lives in 5 dimensions, has quadratic nonlinearities and multiple parameters (the rate
constants). On the face of it, its behaviour could be extremely complicated. The famous Lorenz
system in three variables x, y and z, [26],

dx/dt = ay − ax
dy/dt = cx− y − xz
dz/dt = xy − bz

(5)

also has quadratic nonlinearities and is well-known to exhibit deterministic chaos for certain values
of the parameters a, b and c, [35]. Nevertheless, the deficiency 0 theorem implies that, irrespective
of the values of the parameters, the system (3) has a unique fixed point, in a sense that we will
make precise, which is asymptotically stable. Notice that (5) cannot come from a chemical reaction
network (with any kinetics), since the disintegration of y into x and z, indicated by the term −xz
in the second equation, is not matched by corresponding production terms for x and z. This tells us
that the structure of (3) is constrained by the fact that it emerges from a chemical reaction network.
We need further notation to exhibit these constraints.

A complex in a reaction network is any of the terms that make up the left hand or right hand
side of a reaction in the network. The network (1) has five complexes: A, 2B, A + C, D and
B + E. Let C denote the set of complexes. Complexes can be thought of as multisets of species:
as functions S → N, where N denotes the nonnegative integers, or, equivalently, as elements of
N
S . (In comparison, sets of species can be thought of as characteristic functions, S → {0, 1}, or,

equivalently, as elements of {0, 1}S .) By the multiplicity of a species x in the complex y we mean
simply y(x), when y is thought of as a multiset: the species B has multiplicity 2 in the complex 2B
and multiplicity 0 in the complex A + C. When regarded as a multiset, each species gives rise to
a basis element of RS , so that A corresponds to the function S → R which has multiplicity 1 at A
and multiplicity 0 at all other species.

If y is a complex, it can be represented in species space by regarding a multiset, y : S → N, in the
obvious way as a function y : S → R, so that

yx = multiplicity of x in y . (6)

This abuse of notation, perpetrated in the CRNT literature and perpetuated here, is convenient. It
should be clear from the context whether “the complex y” refers to y ∈ C or y ∈ RS .
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We also need a convenient way of representing mass-action. If c ∈ RS and y ∈ C, define cy by

cy =
∏
s∈S

(cs)ys . (7)

Since, by assumption, y ∈ NS for any complex y, cy is always well defined for all c ∈ RS . Note that
if some component of c is zero, say cs = 0, then cy = 0 for any y ∈ C, unless it is also the case that
ys = 0, for then 00 = 1. Finally, let R denote the set of reactions so that, for (1),

R = {A→ 2B, 2B → A,A+ C → D,D → A+ C,D → B + E,B + E → A+ C} .

Definition 2.1 A chemical reaction network is a quadruple {S, C,R, κ} where S is a finite set of
species; C is a finite set of multisets of species, called complexes; R is a relation on C, denoted y → y′

for y, y′ ∈ C, which represents a reaction converting y to y′; and κ : R → P associates a positive
rate constant to each reaction.

The time evolution of a chemical reaction network is given by

dc

dt
=

∑
y→y′∈R

(κy→y′)cy(y′ − y) . (8)

It is easy to confirm that (8) translates into (3) for the reaction network (1). We shall use (8) as the
definition of the dynamics of a chemical reaction network. It reveals the first signs of the linearity
hidden in (3).

Definition 2.2 The stoichiometric subspace, S, of a chemical reaction network is the vector sub-
space of RS defined by S = span{y′ − y | y → y′ ∈ R}.

We note from (8) that dc/dt ∈ S. It follows that any trajectory of (8) must lie in a fixed coset of
S. If the initial conditions lie in a particular coset of S, then the entire subsequent time evolution
of (8) from those initial conditions is constrained to lie in the same subspace. S can be easily
determined for the reaction network (1). It is easiest to work with multisets. Ignoring the obvious
linear dependencies coming from reverse reactions, we find that

S = span{2B −A,A+ C −D,B + E −D,B + E −A− C} .

Since B + E −A− C = (B + E −D)− (A+ C −D), this simplifies further to give

S = span{2B −A,A+ C −D,B + E −D} (9)

which is clearly linearly independent in RS . It follows that dimS = 3, so that the stoichiometric
subspace has co-dimension 2 in the species space. This represents a considerable constraint on the
dynamics of (3), which can be made explicit as conservation laws. Recall that RS has a standard
inner-product, denoted 〈u, v〉 for u, v ∈ RS , under which the standard basis becomes orthonormal.
Conservation laws are elements of the orthogonal complement of S, S⊥. If u ∈ S⊥ then the linear
form x → 〈x, u〉 is necessarily constant on any coset of S and hence constant on any trajectory of
(8). It is not difficult to see that, for the network (1), C + D + E has inner-product 0 with each
basis element of S in (9), so that C + D + E ∈ S⊥. It follows that the sum of the concentrations,
cC+cD+cE , is constant along any trajectory of (3). This should be intuitively clear from inspection of
(1). Since S⊕S⊥ = R

S , the dimension of S⊥ must be 2. Hence there must be one more independent
conservation law in addition to C +D + E. We leave it to the reader to work it out.

The right hand side of (8) is a mixture of nonlinear and linear parts. By decomposing it in a certain
way, we can separate them. This forms the subject of the next section.
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3 Linearity in chemical reaction networks

The dynamics of a chemical reaction network takes place in species space, RS , while the network
itself is a relation on the set of complexes, C. It will turn out to be very helpful to reconstruct
the dynamics in terms of complexes. Let f : RS → R

S denote the right hand side of (8), so that
dc/dt = f(c).

Let RC denote complex space. It has a natural basis defined by the characteristic functions of the
singleton subsets {y}, where y ∈ C. If U ⊆ C let ωU : C → {0, 1} denote its characteristic function:

ωU (y) =
{

1 if y ∈ U
0 otherwise

For a singleton subset, {y}, where y ∈ C, we shall use ωy in place of ω{y}. Complex space then has
the standard basis {ωy | y ∈ C}.

Let Y : RC → R
S be the linear map defined by Y (ωy) = y. Let Ψ : RS → R

C be the nonlinear map
defined by Ψ(c) =

∑
y∈C c

yωy. These two maps enable us to move back and forth between species
space and complex space. It remains only to encode the dynamics on complex space.

Let x ∈ RC and suppose that x has components xy with respect to the standard basis, so that
x =

∑
y∈C xyωy. For a given kinetics, κ : R → P, define the map Aκ : RC → R

C by

Aκ(x) =
∑

y→y′∈R
(κy→y′)xy(ωy′ − ωy) . (10)

Note that Aκ(x) is evidently linear in x. It is now easy to see that the following diagram commutes:

R
S

R
S�

f

R
C

R
C�Aκ

?
Y 6Ψ (11)

In other words, f = Y AκΨ. This decomposition is fundamental to what follows.

Y and Ψ are bookkeeping functions. They depend only on the set of complexes, C. Aκ carries the
weight of the dynamics and depends both on the network structure, R, and the kinetics, κ. However,
Aκ is a linear function, which gives a hint that the dynamics of f may not be as formidable as
descriptions like (3) suggest. Ψ is the only nonlinearity present. As we shall see, it too conceals
further linearity. We need more notation to explain this.

If f : V →W is a linear map, its transpose, fT : W → V , is defined with respect to chosen bases in
V and W by the equation

〈f(v), w〉 = 〈v, fT (w)〉 ,

for all v ∈ V and w ∈W . Here, the inner product on the left is the standard one taken in W , while
that on the right is the standard one taken in V . Both species space, RS , and complex space, RC ,
have standard bases and inner products are taken with respect to these, so that the standard bases
become orthonormal.

Let ln : P→ R denote the natural logarithm. If X is any finite index set, we can extend ln to PX by
applying it componentwise. This gives a function ln : PX → R

X where (ln(v))x = ln(vx) for v ∈ PX .
Note that if c ∈ PS then Ψ(c) ∈ PC . The following is not stated as a separate result in CRNT but
it is helpful to extract it from the proof of [11, Proposition 5.9].
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Lemma 3.1 [11, 5.76]) The following diagram commutes:

R
S

P
S� ln

R
C

P
C� ln

6Y T 6Ψ (12)

In other words, if c ∈ PS then ln Ψ(c) = Y T ln(c).

Proof: If y ∈ C, then it is easy to see from (7) that ln(cy) = 〈y, ln(c)〉. By definition, Ψ(c) =∑
y∈C c

yωy, so that ln Ψ(c) =
∑
y∈C〈y, ln(c)〉ωy. Hence, for any z ∈ C,

〈ωz, ln(Ψ(c))〉 = 〈z, ln(c)〉 = 〈Y (ωz), ln(c)〉 = 〈ωz, Y T ln(c)〉 ,

from which the result follows.

QED

We see from Lemma 3.1 that Ψ is also trying hard to be linear; one might almost say that it is
“log-linear”. It is also closely related to the other bookkeeping function Y , which is linear. The
linearity evident in (11) and (12) is crucial to CRNT. Lemma 3.1 will turn out to be useful in §7.

The decomposition of f in (11) immediately suggests a way to study fixed points. We first need to
say exactly what we mean by this.

Definition 3.1 A fixed point of a chemical reaction network is a state c ∈ PS for which dc/dt = 0.

States of the network which lie on the boundary of the nonnegative cone P
S

, so that one or more
concentrations are zero, are excluded from consideration here. It is certainly possible for a network
to asymptotically tend towards such a state—the concentration of A in the network A→ B decreases
exponentially from its initial value—but these boundary states are peripheral to CRNT.

From the fundamental dynamical equation (8), a fixed point occurs if, and only if, f(c) = 0. This
may come about only in certain ways along the composition Y AκΨ = f . If c ∈ PS then Ψ(c) ∈ PC ,
so that Ψ(c) 6= 0. The next possibility is that AκΨ(c) = 0. Determining exactly when this happens
will form the main part of the argument for the deficiency 0 theorem. It will clearly be important
to determine kerAκ, which we do in Theorem 4.2. The final possibility is that AκΨ(c) 6= 0 but
Y AκΨ(c) = 0. This directs our attention to the kernel of Y and more specifically to that part of
the kernel of Y which lies in the image of Aκ.

Definition 3.2 The deficiency of a chemical reaction network is dim(kerY ∩ ImAκ).

CRNT defines the deficiency differently, through a formula. We derive the formula in Proposition 5.1.
The definition given here has the advantage that it both makes clear why the concept is important
and also establishes that it is a nonnegative integer. Note that the two definitions only agree for the
class of networks for which Proposition 5.1 holds.

A simple estimate for the deficiency, δ, of a network can be obtained as follows. Let T = span{ωy′ −
ωy | y → y′}. The map Y is evidently a surjection from T to the stoichiometric subspace, S. From
the definition of Aκ in (10) we see that ImAκ ⊆ T . It follows that

kerY ∩ ImAκ ⊆ kerY |T (13)
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and so δ ≤ dim kerY |T . Let s = dimS. Since dimT = dim kerY |T + dim ImY |T we see that
δ ≤ dimT −s. It is relatively straightforward to determine s by inspection of the complexes and the
reactions, as we did manually in §1 for example (1). Calculating dimT turns out to be even easier
after a little linear algebra.

Let U ⊆ C be any subset which is closed under the reaction relation. That is, if y → y′ and either y
or y′ is in U then so is the other. It follows that, for each reaction y → y′, either it is the case that
neither y nor y′ are in U or it is the case that both y and y′ are in U . Either way, 〈ωy′−ωy, ωU 〉 = 0.
Since this holds for all reactions, ωU ∈ T⊥, where T⊥ denotes the orthogonal complement of T . By
finding all subsets like U , we can determine T⊥.

The construction of U suggests how to do this through the following equivalence relation on com-
plexes. First, symmetrise the reaction relation, →, by saying that y is directly linked to y′, denoted
y ↔ y′, if either y → y′ or y′ → y. Evidently, if y ↔ y′ then y′ ↔ y. Now take the reflexive,
transitive closure of ↔ to obtain an equivalence relation.

Definition 3.3 If y, y′ ∈ C then y is said to be linked to y′, denoted y ∼ y′, if either y = y′ or there
are y1, · · · , ym ∈ C such that y = y1 ↔ y2 ↔ · · · ↔ ym = y′.

The equivalence classes of complexes under ∼ are termed linkage classes. Example (1) has 2 linkage
classes: {A, 2B} and {A+ C,D,B + E}. Let l be the number of linkage classes in the network. It
is easy to determine this by inspection of the reactions. Let L1, · · · , Ll ⊆ C be the linkage classes.
It is clear that each linkage class is closed under the reaction relation and is hence like the subset
U . It follows from what we did above that ωL1 , · · · , ωLl ∈ T⊥. Now suppose that x ∈ T⊥ and
that x =

∑
y∈C xyωy in the standard basis. If y → y′ then the orthogonality 〈y′ − y, x〉 = 0 shows

that xy = x′y. Hence, if y ∼ y′ then xy = xy′ . We see that xy is constant on linkage classes. It
follows immediately that T⊥ = span{ωL1 , · · · , ωLl}. Since equivalence classes are always distinct, it
is evident that {ωL1 , · · · , ωLl} is also linearly independent and gives a basis for T⊥.

Let n denote the number of complexes in the network. Since dimT + dimT⊥ = n, we see that
dimT = n− l. We can now summarise what we have proved.

Lemma 3.2 The following statements hold for any chemical reaction network:

1. ([11, Lemma 4.4]) span{ωy′ − ωy | y → y′} = span{ωy′ − ωy | y ∼ y′},

2. ([11, Lemma 4.6]) span{ωy′ − ωy | y → y′}⊥ = span{ωL1 , · · · , ωLl},

3. ([11, Lemma 4.5]) dim span{ωy′ − ωy | y → y′} = n− l.

We did not explicitly prove the first conclusion of Lemma 3.2 but it is implicit in the discussion
above.

Proposition 3.1 The deficiency, δ, of any chemical reaction network satisfies 0 ≤ δ ≤ n − l − s,
where n is the number of complexes, l is the number of linkage classes and s is the dimension of the
stoichiometric subspace.

Example (1) has n = 5, l = 2 and s = 3 so that δ = 0. This is our first example of a deficiency 0
network.

To calculate the deficiency for an arbitrary network is non-trivial. It depends on knowing how ImAκ
sits inside T . For certain networks it can be shown that ImAκ = T , which makes the problem
particularly easy: in this case, δ = n− l − s; see Proposition 5.1. The networks considered in both
the deficiency 0 and deficiency 1 theorems fall into this class. We need to turn our attention from
Y to Aκ to understand when this happens and this brings us to one of the key foundational results
of CRNT.
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4 The kernel of Aκ

The map Aκ : RC → R
C is linear. The first thing to do is to find out what it looks like as a matrix

in the standard basis. Recall that we write vectors as column vectors. Suppose that the complexes
of the network are labelled 1, · · · , n, so that C = {1, · · · , n}. The reactions in the network then
constitute the edges of a directed graph on the vertices 1, · · · , n. A reaction i → j corresponds to
an edge from the source vertex i to the target vertex j. The kinetic specification for the network
constitutes a labelling on the edges by positive numbers. Let Aij denote the n × n matrix whose
ij-th entry is the corresponding rate constant when that makes sense and zero otherwise:

Aij =
{
κi→j if i→ j
0 if there is no edge from i to j . (14)

A vector x ∈ RC gives a distribution of numbers on the vertices of the directed graph. From the
definition of Aκ in (10) we see that the effect of applying Aκ to x is to play the following game: on
each edge i → j of the graph, the amount xiAij is taken from the source vertex, i, and given to
the target vertex, j. From the point of view of a single vertex j, the net contribution of the game
coming from all the edges is given by

∑
i→j

xiAij − xj(
∑
j→k

Ajk) . (15)

We can rewrite this in matrix notation as

Aκ(x) = xT (A− diag(A1)) . (16)

We commit another abuse of notation by using 1 to denote the vector all of whose components are 1.
The effect of multiplying A by 1 is to sum the elements on each row, (A1)j =

∑
k Ajk, corresponding

to the right hand sum in (15). The operator diag(x) converts a vector x into the diagonal matrix in
which the components of x appear on the main diagonal:

diag(x)ij =
{

0 if i 6= j
xi otherwise .

Note that diag(x)1 = x. Finally, since we have chosen to write vectors as column vectors, we need
to use xT , the transpose of x, to pre-multiply a matrix. The term xTA in (16) corresponds to the
left hand sum in (15).

The matrix equation (16) immediately clarifies the nature of the problem. Suppose, for simplicity,
that no row of matrix A is 0. In other words, that every vertex in the graph is the source of some
edge. (This is true for the graph of (1) but false for the graph of (4).) In this case diag(A1) is
invertible. Hence, x ∈ kerAκ if, and only if,

xTA(diag(A1))−1 = xT .

This is the eigenvector problem for the matrix A(diag(A1))−1. Since this matrix is nonnegative,
the eigenvector problem can be solved by Perron-Frobenius theory. This is a well-known branch
of matrix analysis—Perron and Frobenius first proved their results around 1912—which has been
widely used in applications, [6, 27]. CRNT takes a different approach in [16], although the relevance
of Perron-Frobenius theory is noted on [11, page 4-11]. We take advantage of the specific properties
of Aκ to gently introduce the main ideas.

The description of Aκ as a game makes it clear that there is no net effect over all vertices: whatever
amount is taken from one vertex is given to another. This must reflect itself as some kind of

9



invariance property of Aκ. Indeed,

(A− diag(A1))1 = A1− diag(A1)1 = A1−A1 = 0 . (17)

We need some further notation to exploit this. It will be helpful to extend functions and relations
from numbers to vectors on a component-wise basis, while keeping the same notation. For instance,
if x ∈ RC , then the absolute value of x, |x|, is the vector such that |x|i = |xi|. Similarly, if x, y ∈ RC
then x ≤ y if, and only if, xi ≤ yi for 1 ≤ i ≤ n. By x < y we mean that x ≤ y and, for some
1 ≤ i ≤ n, xi < yi.

Lemma 4.1 For any x ∈ RC if xT (A− diag(A1)) ≥ 0 then xT (A− diag(A1)) = 0.

Proof: Using (17), [xT (A− diag(A1))]1 = xT [(A− diag(A1))1] = 0. By assumption, this is also a
sum of nonnegative terms, each of which must hence be zero.

QED

This Lemma is quite helpful. Suppose that we have an element in the kernel of Aκ, say x ∈ RC
such that Aκ(x) = 0. Then by (16) we see that xTA = xTdiag(A1). Taking absolute values
on both sides and using the triangle inequality, we see that |x|TA ≥ |x|Tdiag(A1). But then,
|x|T (A−diag(A1)) ≥ 0 and so, by Lemma 4.1, |x|T (A−diag(A1)) = 0. We have made the following
interesting observation.

Lemma 4.2 ([16, Lemma A]) If x ∈ kerAκ then |x| ∈ kerAκ.

It follows that we can always suppose, without loss of generality, that x ∈ kerAκ satisfies x ≥ 0.
Let us consider the implications of this if some component of x is 0, say xj = 0. Since Aκ(x) = 0
we see from (15) that

∑
i→j

xiAij = xj(
∑
j→k

Ajk) = 0 .

But by construction, Aij > 0 for each edge i→ j, while we have assumed that xi ≥ 0 for 1 ≤ i ≤ n.
It follows that, in fact, xi = 0 for each vertex i with an edge to j.

Lemma 4.3 ([16, Lemma B]) If x ∈ kerAκ and xj = 0 then xi = 0 whenever i→ j.

The effect of a zero component is propagated backwards along the graph. This suggests the following
equivalence relation on complexes, which is different to the equivalence relation of linkage introduced
in Definition 3.3. We first take the reflexive, transitive closure of → and then symmetrise it.

Definition 4.1 If y, y′ ∈ C then y ultimately reacts to y′, denoted y ⇒ y′, if either y = y′ or there
exists y1, · · · , ym ∈ C such that y = y1 → y2 → · · · → ym = y′. y is strongly linked to y′, denoted
y ≈ y′, if both y ⇒ y′ and y′ ⇒ y.

It is evident that being strongly linked is an equivalence relation. The equivalence classes are called
the strong linkage classes in CRNT. It is also evident that if y ≈ y′ then y ∼ y′ so that the strong
linkage classes are contained in the linkage classes. In example (1) the strong linkage classes are
{A, 2B} and {A + C,D,B + E} so that the strong linkage classes happen to coincide with the
linkage classes. In example (4) the strong linkage classes are {A + E,AE} and {B + E}, while
{A+ E,AE,B + E} is the unique linkage class.
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The point of this definition can be seen in the following observation. Recall that if x ∈ RC then
the support of x, denoted supp(x) ⊆ C, is the subset of those complexes where x is non-zero:
supp(x) = {i ∈ C | xi 6= 0}. Suppose now that x ∈ kerAκ and that U ⊆ C is a strong linkage class.
Suppose further that U ∩ supp(x) 6= ∅ and choose i ∈ U ∩ supp(x). If j is any other element of U
then by Definition 4.1, i⇒ j. It follows that xj 6= 0 for if it were then Lemma 4.3 could be applied
repeatedly to show that xi = 0, implying that i 6∈ supp(x). It follows that U ⊆ supp(x). In other
words, either U ∩ supp(x) = ∅ or U ⊆ supp(x). In particular, supp(x) is a union of strong linkage
classes, [16, Lemma C].

However, not all the strong linkage classes contribute to supp(x). To identify the ones which do, we
have to get to grips with some aspects of Perron-Frobenius theory.

It should have been evident, when we introduced the matrix A, that there is an intimate relationship
between matrices and labelled, directed graphs. If A is an n×n matrix, then it gives rise to a directed
graph on the vertices {1, · · · , n} in which there is an edge i → j if, and only if, Aij 6= 0; if there
is an edge, then its label is Aij . Conversely, any directed graph whose edges are labelled with real
numbers gives rise to a corresponding matrix. This relationship between matrices and graphs turns
out to be particularly significant when the matrix is nonnegative or, equivalently, when the labels
on the graph are positive numbers. One consequence of the graphical structure is that any matrix
can be placed in block triangular form by reordering the basis vectors. This is easier to understand
by drawing diagrams than by writing down all the notational intricacies. However, once we have
this form, the rest of the discussion will be straightforward.

The strong linkage classes inherit a partial order from the relation ⇒. If i ∈ C, let [i] denote the
strong linkage class containing i: [i] = {j ∈ C | i⇒ j and j ⇒ i}. We say that [i] � [j] if, and only if,
i⇒ j. This is well-defined, since if k ∈ [i] and m ∈ [j], then i⇒ j if, and only if, k ⇒ m. It is easy
to see that � is a partial order on the set of strong linkage classes: it is reflexive, anti-symmetric
and transitive. Let p be the number of strong linkage classes. Order the strong linkage classes,
L1, · · · , Lp, in such a way that if Lu � Lv then u ≤ v. This amounts to embedding the partial order
in a linear order, which it is easy to see can always be done.

We now rename the complexes, 1, · · · , n, to make the ordering on them consistent with the ordering
on the strong linkage classes. Let ci be the size of the i-th linkage class, so that c1 + · · ·+ cp = n. It
will be convenient to let di denote the partial sums of this sequence, di =

∑
1≤j≤i ci for 1 ≤ i ≤ p,

and to let d0 = 0. Rename the complexes in the first linkage class, L1, in any order, using only
the numbers 1, · · · , c1 = d1. Rename the complexes in L2, in any order, using only the numbers,
d1 + 1, · · · , c1 + c2 = d2. Proceed in this way until all the complexes have been renamed. The
elements in the i-th linkage class, Li, now constitute the set {di−1 + 1, · · · , di}, for 1 ≤ i ≤ p. Such
a renaming amounts to performing a permutation on the standard basis in RC .

The partition of complexes into strong linkage classes under this renaming provides a convenient
way to decompose vectors and matrices. If x ∈ RC , the notation x(i), will denote the sub-vector, or
“block”, of x corresponding to the i-th linkage class:

x(i) = (xd(i−1)+1, · · · , xdi) ∈ RLi ,

for 1 ≤ i ≤ p. Similarly, if M is any n× n matrix, let M(i, j) denote the block corresponding to the
intersection of the rows of linkage class Li and the columns of linkage class Lj . M(i, j) is then the
ci × cj sub-matrix of M whose top left entry is Md(i−1)+1,d(j−1)+1 for 1 ≤ i, j ≤ p.

Suppose now that i ∈ Lu and j ∈ Lv. If i ⇒ j then Lu � Lv and so u ≤ v. If Lu 6= Lv then by
construction i ≤ j. When two complexes are in different linkage classes, they can only “ultimately
react” to each other in the increasing direction. It follows that the matrix of A in the new basis is
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in upper-triangular block form:

A =


A(1,1) A(1, 2) · · · A(1, p)

0 A(2,2) · · ·
...

...
...

. . .
...

0 0 · · · A(p,p)

 , (18)

where the lower off-diagonal blocks, A(i, j) with i > j, are all zero. The diagonal blocks, indicated
by boxes, are square matrices. This is the form that we need for the rest of the argument.

Choose x ∈ kerAκ. By Lemma 4.2, we may assume that x ≥ 0. By (16), xTA = xTdiag(A1). It
will be convenient to let ∆ = diag(A1). Note that A is block upper-triangular and that ∆ is block
diagonal. Performing a block multiplication and isolating the first block, we see that

x(1)TA(1, 1) = x(1)T∆(1, 1) .

Suppose that in the first row of (18), at least one of the off-diagonal blocks, A(1, j) with 1 < j, is
non-zero. It is easy to see that this means that A(1, 1)1 < A1(1). Hence, diag(A(1, 1)1) < ∆(1, 1).
As we saw above, supp(x) is a union of strong linkage classes. It follows that either x(1) = 0 or
x(1) ∈ PL1 . If we suppose the latter then we may deduce that

x(1)TA(1, 1) > x(1)Tdiag(A(1, 1)1)

so that
x(1)T (A(1, 1)− diag(A(1, 1)1)) > 0 .

The complexes in the first strong linkage class L1 and all the reactions between them, form a
chemical reaction network in their own right. There are c1 complexes and the matrix corresponding
to the labelled, directed graph is A(1, 1). Applying Lemma 4.1 to this sub-reaction network leads
immediately to a contradiction, since x(1)T (A(1, 1) − diag(A(1, 1)1)) = 0. Hence, it must be the
case that x(1) = 0. The first linkage class does not contribute to supp(x) if some off-diagonal block
is non-zero.

This assumption is equivalent to saying that the first strong linkage class is not terminal. A strong
linkage class L is said to be terminal if L � L′ implies L = L′. A terminal class is a maximal element
in the partial order. We have shown that if the first linkage class is non-terminal, then it does not
contribute to supp(x).

What happens if L1 is terminal? In this case there are no off-diagonal blocks, A(1, j) with 1 < j, so
that A(1, 1)1 = A1(1) and diag(A(1, 1)1) = ∆(1, 1). It follows that

x(1)TA(1, 1) = x(1)Tdiag(A(1, 1)1) . (19)

Suppose first that L1 is a terminal strong linkage class such that c1 > 1. If i ∈ L1 then since c1 > 1,
we can always find another complex j ∈ L1, with i 6= j. Since L1 is a strong linkage class, i⇒ j. It
follows that the i-th row of A(1, 1) is not zero. Since this is true for all rows, A(1, 1)1 ∈ PL1 , and so
diag(A(1, 1)1) is invertible. It follows from (19) that

x(1)TA(1, 1)(diag(A(1, 1)1))−1 = x(1)T , (20)

so that x(1) ∈ RL1 is an eigenvector of the matrix A(1, 1)(diag(A(1, 1)1))−1. At this point we can
appeal to the main result in Perron-Frobenius theory. (The Appendix of [16] sidesteps this by using
the specific properties of Aκ, which simplifies the argument at this point. However, there is some
value in relating the details here to a body of well-understood mathematics.)

Let M be any m ×m nonnegative matrix. As described above, we can associate to it a labelled,
directed graph. Nonnegative matrices whose associated graphs are strongly linked (ie: has only a
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single strong linkage class) are called irreducible. Equivalently, an irreducible matrix is one which
cannot be brought into upper triangular block form by any permutation of the basis elements. Each
diagonal block A(i, i) in (18) with ci > 1 is irreducible. The following is the classical Perron-
Frobenius theorem, [27, Theorem 4.1], stated in a way suitable for our purposes.

Theorem 4.1 (The Perron-Frobenius theorem) Let M by any irreducible nonnegative m×m matrix.
Any two eigenvectors in Pm have the same eigenvalue, which is the spectral radius of M , and are
the same up to a positive scalar multiple. In particular, the eigenspace for the spectral radius is 1
dimensional and can always be represented as span(u), with u ∈ Pm.

The spectral radius of M is the maximum absolute value of any (complex) eigenvalue: the maximum
absolute value of all (complex) roots of the characteristic polynomial, det(M − zI) = 0. It is not
usually an eigenvalue but Theorem 4.1 asserts that it is for an irreducible nonnegative matrix. Note
that an irreducible nonnegative matrix can have other real eigenvalues smaller than the spectral
radius but the corresponding eigenvectors can never lie in Pm.

Since L1 is a strong linkage class and c1 > 1, it is clear that A(1, 1) and A(1, 1)(diag(A(1, 1)1))−1 are
irreducible. Furthermore, if M = A(1, 1)(diag(A(1, 1)1))−1 then it is obvious that M1 = 1, so that
M is row-stochastic: the sum of the entries in each row is 1. Hence, if uTM = λuT , and u ∈ PL1 ,
it is easy to see that λ = 1, so that the spectral radius of M is 1. We see from Theorem 4.1 and
(20) that, no matter what the choice of x ∈ kerAκ, x(1) = λu, where λ ∈ R and u ∈ PL1 is the
eigenvector guaranteed by Theorem 4.1.

It remains to deal with the annoying case when c1 = 1. L1 is then a terminal strong linkage
class containing only a single complex. In this case, the corresponding block matrix may not be
irreducible. If the graph does not have a self-loop at this complex then A(1, 1) = 0. In general, a
directed graph may have self-loops but a chemical reaction network probably does not have reactions
of the form y → y for some y ∈ C. If it does in such a way that A(1, 1) 6= 0, then we may deal with
it as above in the case where c1 > 1. If not, so that A(1, 1) = 0, then x(1) ∈ R1 is unconstrained by
(19), since A(1, 1) = diag(A1)(1, 1) = 0. If we set u = 1, then we can conclude, as above, that, no
matter what the choice of x ∈ kerAκ, x(1) = λu, for some λ ∈ R.

The behaviour of L1 is followed by all the other linkage classes. For each 1 ≤ i ≤ p such that Li is
a terminal strong linkage class, let ui ∈ PLi be given by ui = 1 whenever ci = 1 and A(i, i) = 0, and
given by some eigenvector solution,

uTi A(1, 1)(diag(A(1, 1)1))−1 = uTi ,

with ui ∈ PLi , as guaranteed by Theorem 4.1, in all other cases.

Proposition 4.1 Suppose that x ∈ kerAκ. If Li is not terminal then x(i) = 0, while if Li is
terminal then x(i) = λiui, for some λi ∈ R.

Proof: The proof is by induction on i. The case i = 1 was done above. Suppose now that i > 1
and that the claim has been established for the linkage classes L1, · · · , L(i−1). Since xTA = xT∆,
by performing a block multiplication and isolating the i-th block, we see that

x(i)TA(i, i) +
∑

1≤j<i

x(j)TA(j, i) = x(i)T∆(i, i) .

(This should be thought of as a vector equation taking place in RLi .) The blocks A(j, i) with j < i
are all off-diagonal. There are two possibilities in the range j < i. Either Lj is terminal, in which
case A(j, i) = 0, or Lj is not terminal, in which case the inductive hypothesis implies that x(j) = 0.
Together these imply that

∑
1≤j<i x(j)TA(j, i) = 0, and so

x(i)TA(i, i) = x(i)T∆(i, i) .
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We can now argue exactly as in the case i = 1 to show that x(i) = 0 if Li is not terminal while
x(i) = λiui, for some λi ∈ R, if Li is terminal. The result follows by induction.

QED

We can now assemble what we have learned so far. We leave it to the reader to fill in the minor
details.

Theorem 4.2 ([16, Appendix, Proposition]) Let t be the number of terminal strong linkage classes
in a chemical reaction network and suppose that these classes are T1, · · · , Tt ⊆ C, in any order. The
following statements hold.

1. There exist χi ∈ P
C

such that supp(χi) = Ti for 1 ≤ i ≤ t.

2. kerAκ = span{χ1, · · · , χt} and these are linearly independent.

3. dim kerAκ = t.

5 The deficiency formula and some biological examples

Theorem 4.2 is one of the key results in CRNT. Among other things, it gives a very simple condition
under which the deficiency inequality of Proposition 3.1 becomes an equality. We will use this as
an excuse to look at some simple biochemical examples before returning to some other important
consequences of Theorem 4.2 in the next section.

It is evident from Theorem 4.2 that dim ImAκ = n − t. Recalling the proof of Proposition 3.1,
ImAκ ⊆ T , where T = span{ωy′ − ωy | y → y′ ∈ R}. Lemma 3.2 tells us that dimT = n − l. This
tells us that t ≥ l but we know this for other reasons as well. Recall the notation introduced in
§4. Since i ≈ j implies that i ∼ j, every linkage class must be a union of strong linkage classes.
Furthermore, since there are no reactions between linkage classes, if [i] � [j] and [j] is maximal in
the � order, then [j] must be part of the same linkage class as [i]. Hence, each linkage class must
contain at least one terminal strong linkage class and so t ≥ l. If t = l then T = ImAκ. It follows
that the inclusion in (13) is an equality.

Proposition 5.1 If each linkage class has precisely one terminal strong linkage class then the defi-
ciency, δ, of the network is given by δ = n− l − s.

CRNT uses this formula to define the deficiency. This agrees with the one used here, Definition 3.2,
when the conditions of Proposition 5.1 hold; that is, whenever, t = l.

We have already shown, using Proposition 3.1, that the network (1) has deficiency 0. When we
discussed the Michaelis-Menten formula in §2, we considered a possible network for a single substrate
enzymatic reaction in (4). In this case, C = {A + E,AE,B + E} so that n = 3. There is a single
linkage class, given by C itself, but there are two strong linkage classes: {A + E,AE}, and one of
those singleton classes, {B+E}, that was such a nuisance in §4. However, there is only one terminal
strong linkage class, {B + E}. We see that l = t = 1, so that the hypothesis of Proposition 5.1 is
satisfied. As for the stoichiometric subspace,

S = span{A+ E −AE,B + E −AE} ,

which is evidently linearly independent, so that s = 2. By Proposition 5.1, δ = 0.

It is clear that the network (4) does not have very interesting behaviour. Because the degradation of
the enzyme-substrate complex has been assumed to be irreversible, the reaction simply consumes its
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substrate, A, while producing B. The concentration of A will decrease towards 0, so that, no matter
what initial conditions we start from, (4) should have no fixed point in PS . Since its deficiency is
zero, the only kind of fixed point it can have is one where AκΨ(c) = 0. This can be ruled out using
Proposition 6.1 because (1) is not “weakly reversible” in the sense of Definition 6.1.

There are two ways to get around the lack of fixed points. The simplest is to assume that the second
reaction is reversible, so that

A+ E ⇀↽ AE ⇀↽ B + E . (21)

(This gives rise to the reversible Michaelis-Menten formula in which product inhibition also plays a
part in determining the reaction rate: see [8, §2.6] for more details.) As before, C = {A+E,AE,B+
E}, so that n = 3. There is still only 1 linkage class but now there is only one strong linkage class,
which must hence be terminal. It is still the case that l = t = 1 and s is still 2. Hence, the deficiency
of (21) is also 0. We would expect, however, in contrast to the irreversible case (4), that this network
does have a fixed point. Indeed, intuition suggests that no matter what rate constants and initial
concentrations are chosen, (21) would reach a point of thermodynamic equilibrium, with no net
flux through the network. A and B will be continually inter-converted but at the same rate. This
corresponds to a fixed point albeit a rather uninteresting one from the biological viewpoint. The
existence of such a fixed point can be confirmed using Theorems 6.4 and 7.1.

The other way to encourage fixed points, which is closer to what happens in biology, is to make the
system open by allowing A to be continually replenished and B to be continually depleted. Pseudo-
reactions allows us to do this, leading to the following network, in which we have chosen to use the
reversible enzymatic reaction:

A+ E ⇀↽ AE ⇀↽ B + E B → 0→ A . (22)

The pseudo-reaction 0 → A corresponds to continual replenishment of A while B → 0 corresponds
to degradation of B. In this network, C = {A + E,AE,B + E,A,B, 0}, so that n = 6. There are
two linkage classes, {A + E,AE,B + E}, and {A,B, 0}, so that l = 2. There are 4 strong linkage
classes

{A+ E,AE,B + E}, {B}, {0}, {A} ,

so that t = 4, but only two of these are terminal: {A+ E,AE,B + E} and {A}. It is still the case
that l = t, so that the hypothesis of Proposition 5.1 is still satisfied. The stoichiometric subspace is
given by

S = span{A+ E −AE,B + E −AE,B,A, } = span{A,B,E −AE} ,

so that s = 3. By Proposition 5.1, δ = 1. Our intuition suggests that (22) will reach a fixed point
in PS , irrespective of the initial conditions, provided that the replenishment rate of A equals the
degradation rate of B, so that there is a constant flux through the reaction. However, the deficiency
0 theorem is not applicable and the conditions needed to apply the deficiency 1 theorem do not hold.

Our final example is taken from a paper of Goldbeter and Koshland, who undertook a theoretical
analysis of covalent modification cycles, [17]. This example may look somewhat futile to a chemical
engineer,

A+ E ⇀↽ AE → B + E B + F ⇀↽ BF → A+ F , (23)

since A and B are merely mutually inter-converted but such cycles are extremely important bio-
logically. A key regulatory mechanism at the cellular level is the covalent modification of a protein
by attachment or detachment of a small molecule, such as a phosphate or methyl group. (The
concentration of the molecules providing such groups, such as ATP for phosphate, is often regarded
as being constant and is hence absorbed into the rate constants of (23).) Modifications of this kind
serve either to activate the protein so that it can carry out further tasks, including further covalent
modifications, or to deactivate it to prevent such tasks being carried out. Signals which impinge
upon a cell are integrated and processed through a complex network of such regulatory interactions,
[19].

15



Because the conversion of A to B is, in some sense, reversible, intuition suggests, as in example
(21), that the system will tend to a fixed point no matter what the initial concentrations. Indeed,
Goldbeter and Koshland give a formula for this fixed point, under the same approximations used to
prove the Michaelis-Menten formula. However, this network is not “weakly reversible” in the sense
of Proposition 6.1, nor is it of deficiency 0. It is easy to see that it has deficiency 1 (n = 6, l = t =
2, s = 3) but it falls outside the scope of the deficiency 1 theorem.

As we see from this example and the preceding one, there are situations of biological interest that are
not covered by either the deficiency 0 or deficiency 1 theorems. The idea of “reversibility” alluded
to in the examples above forms an interesting link between our intuitions and the mathematical
statements of the deficiency theorems. It seems that some form of reversibility is important for
the existence of fixed points. In this respect both the deficiency 0 and deficiency 1 theorems focus
on “weak reversibility”, which is defined at the level of complexes. As example (23) of Goldbeter
and Koshland suggests, there are more intricate forms of reversibility in which both complexes and
species play a part. Results of this nature are discussed in Paul Schlosser’s PhD thesis, [29], but
they lie outside the scope of these notes.

6 Fixed points for which AκΨ(c) = 0

We now turn our attention back to fixed points. Recall the remarks made after Definition 3.1.
It follows from (7) that Ψ(c) ∈ PC whenever c ∈ PS . Hence dc/dt = 0 in (8) if, and only if,
either AκΨ(c) = 0 or, if this is not the case, if ker(Y Aκ) 6= ∅. Networks of deficiency 0, for
which kerY ∩ ImAκ = ∅, cannot satisfy the second condition, so let us consider the first possibility.
Theorem 4.2 gives a great deal of insight into this case. However, the big surprise will be that the
deficiency of the network turns out to be irrelevant. If there is a fixed point for which AκΨ(c) = 0
then all fixed points have this form, irrespective of the deficiency of the network. It will take us a
while to see why.

If Ψ(c) ∈ PC then supp(Ψ(c)) = C. If AκΨ(c) = 0 then from Theorem 4.2 we immediately conclude
that each i ∈ C lies in a terminal strong linkage class. This leads to an important definition in
CRNT.

Definition 6.1 A chemical reaction network is said to be weakly reversible if it satisfies any of the
conclusions of the following Lemma.

Lemma 6.1 For any chemical reaction network, the following statements are equivalent, where
i, j ∈ C.

1. Each complex lies in a terminal strong linkage class.

2. Every strong linkage class is terminal.

3. The terminal strong linkage classes coincide with the linkage classes.

4. If [i] � [j] then [i] = [j].

5. If i⇒ j then j ⇒ i.

Proof: (1 implies 2) Since the strong linkage classes form a partition of C, each strong linkage class
must be terminal.

16



(2 implies 3) If i is directly linked to j, so that i ↔ j, and [i] 6= [j], then one of [i] or [j] is not
terminal. It follows that [i] = [j]. Hence if i is linked to j, so that i ∼ j, then [i] = [j]. Therefore
each linkage class is a strong linkage class and hence a terminal strong linkage class.

(3 implies 4) Suppose [i] � [j]. Since there can be no reactions between elements of different linkage
classes, i and j must be in the same linkage class. Hence, by assumption, they must be in the same
terminal strong linkage class, so that [i] = [j].

(4 implies 5) If i⇒ j then [i] � [j]. Hence [i] = [j], so that j ⇒ i.

(5 implies 1) If i ∈ C then, since the terminal classes are maximal in the � order, there must exist
j ∈ C such that [j] is maximal and i⇒ j. But then j ⇒ i and so i ∈ [j].

QED

It will be helpful to record the observation that led to this definition.

Proposition 6.1 In any chemical reaction network, if AκΨ(c) = 0 then the network is weakly
reversible.

Networks (1) and (21) are weakly reversible, while (4) and (22) are not. By Proposition 6.1, the
latter networks cannot have fixed points with AκΨ(c) = 0. We shall show in the next section that
the former networks, both of which are of deficiency 0, do have such fixed points.

Theorem 4.2 also shows that the set of fixed points c ∈ PS , for which AκΨ(c) = 0, has a simple
geometric relationship to the stoichiometric subspace S ⊆ RS .

Proposition 6.2 ([11, Proposition 5.3 (ii) and (iii)]) In any chemical reaction network let Z = {c ∈
P
S | AκΨ(c) = 0}. Suppose that Z 6= ∅. For any c∗ ∈ Z, Z = {c ∈ PS | ln c− ln c∗ ∈ S⊥}.

Proof: Since Z 6= ∅, Proposition 6.1 tells us that the network is weakly reversible. Using Lemma 6.1
we see that the linkage classes coincide with the terminal strong linkage classes. Let L1, · · · , Ll be
the linkage classes. By Theorem 4.2, there exist vectors χ1, · · · , χl ∈ P

C
with supp(χi) = Li,

which form a basis for kerAk. Accordingly, if c∗ ∈ Z then Ψ(c∗) =
∑

1≤i≤l λ(c∗)iχi, where the
coefficients λ(c∗)i ∈ P are uniquely determined by the choice of c∗ ∈ Z. However, by definition of
Ψ, Ψ(c∗) =

∑
y∈C(c

∗)yωy. Since the linkage classes form a partition of the complexes, we must have
that ∑

y∈Li

(c∗)yωy = λ(c∗)iχi ,

for each 1 ≤ i ≤ l. Any other c ∈ Z must satisfy the same equation with λ(c)i in place of λ(c∗)i.
Since the ωy form a basis, it follows that

cy/λ(c)i = (c∗)y/λ(c∗)i

for all y ∈ Li and all 1 ≤ i ≤ l. Rearranging this, we see that cy/(c∗)y must be constant on each
linkage class. Conversely, if, for each 1 ≤ i ≤ l, there exists µi ∈ P such that cy/(c∗)y = µi whenever
y ∈ Li, then ∑

y∈Li

cyωy = µi
∑
y∈Li

(c∗)yωy = µiλ(c∗)iχi .

Hence, Ψ(c) =
∑
y∈C c

yωy =
∑

1≤i≤l µiλ(c∗)iχi ∈ kerAκ. We have shown that

Z = {c ∈ PS | cy/(c∗)y is constant on each linkage class} .

If cy/(c∗)y > 0, then, recalling the proof of Lemma 3.1, we see that ln(cy/(c∗)y) = 〈y, ln c − ln c∗〉.
Suppose that this is constant on linkage classes. If y → y′ is any reaction in R, so that y and y′ are
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in the same linkage class, then 〈y′ − y, ln c − ln c∗〉 = 0. Conversely, if 〈y′ − y, ln c − ln c∗〉 = 0 for
each reaction y → y′ ∈ R, then cy/(c∗)y must be constant on each linkage class. In other words,
c ∈ Z if, and only if, ln c− ln c∗ ∈ S⊥. The result follows.

QED

Proposition 6.2 introduces the important vector, ln c− ln c∗, where c, c∗ ∈ PS and AκΨ(c∗) = 0. It
arises in a natural way from the ratio cy/(c∗)y:

ln(cy/(c∗)y) = 〈y, ln c− ln c∗〉 (24)

Let u ∈ S⊥. If ln c− ln c∗ = u, then c = c∗eu, where juxtaposition of vectors means component-wise
product: if x, y ∈ RS , then (xy)i = xiyi. According to Proposition 6.2, as u runs through S⊥, c∗eu

runs through Z, so that S⊥ acts on Z as a transitive group of transformations. Another of way of
looking at this is that lnZ is a coset of S⊥, so that the structure of Z is remarkably rigid.

Recall from §2 that the trajectories of (8) are restricted to the cosets of S: if (8) is started from
an initial condition which lies in some coset of S, then its subsequent trajectory remains with the
same coset. Since S⊥ meets the cosets of S in one and only one point, it is natural to ask whether
something similar is true of Z.

Definition 6.2 A (positive) stoichiometric compatibility class of the network (8) is a nonempty set
of the form P

S ∩ (S + c) for some c ∈ PS .

The distinct stoichiometric compatibility classes form a partition of PS . Note that the stoichiometric
compatibility classes may sometimes be unbounded, as in (22), and sometimes bounded, as in (4).
It is easy to see that Z can meet a stoichiometric compatibility class in at most one point. Suppose
that u, v ∈ S⊥ and that c∗eu and c∗ev are in the same coset of S. Then c∗eu − c∗ev ∈ S and so,
since u− v ∈ S⊥,

〈c∗(eu − ev), u− v〉 = 0 . (25)

Each component of this inner product looks like c∗i (e
ui − evi)(ui − vi). It is evident that (eui −

evi)(ui − vi) ≥ 0, not matter what the relative values of ui and vi. Since c∗ ∈ PS , it follows from
(25) that u = v.

It is not so simple to show that Z actually meets each stoichiometric compatibility class. To do so we
need to use some nonlinear methods from convex analysis. The basic observation is independent of
chemical reaction networks—S could be any finite index set and S any subspace in what follows—
but we will use the same notation for convenience. Choose any a, b ∈ PS . We claim that there
always exists some u ∈ S⊥ such that aeu − b ∈ S. This will be sufficient for our purposes, since aeu

will be in the same stoichiometric compatibility class as b, which was chosen arbitrarily. There is a
nice idea behind the proof, which comes from [14, Proposition B1].

In one dimension, if a, b ∈ P and x ∈ R, then it is easy to integrate aex − b as a function of x. It
is sufficient to take aex − bx. It follows that, as a vector, aex − b is a gradient. For a, b ∈ PS and
x ∈ RS , it is sufficient to take the function φ : RS → R given by

φ(x) = 〈aex − bx, 1〉 . (26)

The gradient of φ, denoted ∇φ ∈ RS , is the vector of first partial derivatives:

∇φ(x) = (∂φ/∂x1, · · · , ∂φ/∂xm)T .

It is easy to see that ∇φ(x) = aex − b. One way to find u ∈ S⊥ such that aeu − b ∈ S, would be
if φ had a minimum in the space S⊥. Since φ is smooth, such a minimum must satisfy Fermat’s
principle, so that the derivative of φ along any direction in S⊥ should vanish. Suppose that u ∈ S⊥
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is a minimum of φ in S⊥ and let z ∈ S⊥ be chosen arbitrarily. The derivative of φ at u in the
direction z is given by the derivative of t→ u+ tz at t = 0. Using the chain rule,

d

dt
φ(u+ tz)

∣∣∣∣
t=0

=
∑

1≤i≤m

∂φ(u)
∂xi

dxi
dt

∣∣∣∣
t=0

= 〈∇φ(u), z〉 .

If this is zero then, since z was chosen arbitrarily in S⊥, we see that ∇φ(u) ∈ S. Hence aeu − b ∈ S
and we have found the required u ∈ S⊥.

It remains to show that φ has a minimum in S⊥. Reverting again to one dimension, it is easy to see
that the function aex − bx goes to ∞ in both directions. If x → −∞, aex → 0 while −bx → ∞, so
that aex − bx→∞. If x→∞ then aex →∞ while −bx→ −∞. However, the exponential clearly
outruns the linear term, so that aex − bx → ∞. Much the same argument shows that the vector
function (26) has a similar property: if λ ∈ P, then for any x ∈ RS , φ(λx) → ∞ as λ → ∞. This
suggests that φ has a global minimum in RS . Let us first find this. We can then restrict φ to S⊥ to
find the minimum in S⊥.

Take any level set of φ, say F = φ−1(0) = {x ∈ RS | φ(x) ≤ 0}. Since φ is continuous, this is closed
in the topology of RS . If F is also bounded it would then be compact and the continuous function
φ would attain a minimum in F , say at u ∈ F . The nice thing about F is that such a minimum
must also be a global minimum. If φ(x) ≤ 0 then by construction, φ(u) ≤ φ(x), while if φ(x) > 0
then certainly φ(u) ≤ 0 < φ(x). Hence, φ(u) ≤ φ(x) for all x ∈ RS .

Unfortunately, the asymptotic behaviour of φ that we worked out above is not sufficient to establish
that F is bounded. It only tells us that at any point x ∈ F any half-line originating at x must
eventually leave F . It is easy to find unbounded subsets of R2 with this property.

There is one other property of φ that we have not exploited. Recall that a function g : RS → R is
said to be convex if, given λ, µ ∈ [0, 1] such that λ+ µ = 1, and any x, y ∈ RS ,

g(λx+ µy) ≤ λg(x) + µg(y) . (27)

Reverting to one dimension, this means that the graph of g lies below the chord joining the points
(x, g(x)) and (y, g(y)). A subset U ⊆ RS is said to be convex if, given λ, µ ∈ [0, 1] such that λ+µ = 1,
and any x, y ∈ U , the point λx + µy ∈ U . In other words, U is convex if the line segment joining
any two points of U lies entirely in U . There is an intimate connection between convex functions
and convex sets. For instance, it is easy to see that any level set, g−1(x), of a convex function is a
convex set.

In one dimension, if g is smooth, so that it is infinitely differentiable, it is an easy exercise in the
calculus to show that g is convex if dg/dx is increasing. By increasing, we mean that if a ≤ b ∈ R
then dg(a)/dx ≤ dg(b)/dx. Hence, it is sufficient for the convexity of g to show that d2g/dx2 ≥ 0
everywhere. It follows that x→ aex−bx is convex. This is sufficient to show that the vector function
(26) is convex because the direct sum of two convex functions is convex. By this we mean that, if
I and J are any two finite index sets and g : RI → R and h : RJ → R are convex functions then
g+ h : RI ⊕RJ → R is also convex. It is easy to verify this. Hence, φ(x) = 〈aex− bx, 1〉 is a convex
function and F = φ−1(0) is a convex subset.

This supplies the missing ingredient in the argument. It is not possible to find an unbounded convex
subset which contains a point such that some half-line originating from the point eventually leaves
the subset. To see this, recall one of the fundamental results of convex analysis.

Theorem 6.1 (Existence of a separating hyperplane, [2, Theorem 2.4]) Given a non-empty, closed,
convex subset F ⊆ RS and a point x ∈ RS such that x 6∈ F , there exists a hyperplane containing
x such that F lies entirely on one side of the hyperplane. In other words, there is some non-zero
linear function ` : RS → R, such that, for some a ∈ R, `(x) = a and `(y) < a for all y ∈ F .
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The hyperplane is given by `−1(a). It follows from this result that any closed, convex subset F ⊆ RS
is the intersection of a family of closed half-spaces. (The family may have uncountably infinite
cardinality.) It is not difficult to see from this that there are two possibilities: either F is bounded
or, given any point x ∈ F , there is some half-line originating at x which lies entirely in F .

We deduce from what was said above that the level set F = φ−1(0) is a bounded subset of RS and
that therefore φ has a global minimum in F . We can now apply exactly the same argument to φ
restricted to S⊥ and deduce that φ|S⊥ has a minimum u ∈ S⊥. Hence, as shown above, aeu− b ∈ S.
Using the same argument as above for c∗eu it is easy to see that u must be unique.

Proposition 6.3 ([14, Proposition B1]) If S ⊆ RS is any subspace and a, b ∈ PS there exists an
unique u ∈ S⊥ such that aeu − b ∈ S.

We can now summarise what we have learnt so far about the structure of the set of fixed points for
which AκΨ(c) = 0.

Proposition 6.4 In any chemical reaction network let Z = {c ∈ PS | AκΨ(c) = 0}. Then, either
Z = ∅ or lnZ is a coset of S⊥ and Z meets each stoichiometric compatibility class in one and only
one point.

We have still not exhausted what the function ln c− ln c∗ can teach us when AκΨ(c∗) = 0. We know
that at points where AκΨ(c) = 0 the vector ln c− ln c∗ is orthogonal to the stoichiometric subspace,
S. What happens at other points? The following is one of the most satisfying arguments in CRNT.
Let u = ln c − ln c∗. Recall from §3 that we have used f(c) to denote the right hand side of the
fundamental dynamical equation (8). Using (24), we can rewrite f in terms of c∗ and u,

f(c) =
∑

y→y′∈R
(κy→y′)(c∗)ye〈y,u〉(y′ − y) .

Using the bilinearity of the inner product,

〈f(c), u〉 =
∑

y→y′∈R
(κy→y′)(c∗)ye〈y,u〉(〈y′, u〉 − 〈y, u〉) .

The exponential function satisfies a particularly useful inequality which comes in very handy here.
It is easy to see that, for all x ∈ R,

ex ≥ 1 + x with equality if, and only if, x = 0. (28)

Substituting x′ − x for x in (28), we see that

ex(x′ − x) ≤ ex
′
− ex with equality if, and only if, x′ = x . (29)

Taking x′ = 〈y′, u〉 and x = 〈y, u〉 we see that

〈f(c), u〉 ≤
∑

y→y′∈R
(κy→y′)(c∗)y(e〈y

′,u〉 − e〈y,u〉) , (30)

with equality if, and only if, 〈y′, u〉 = 〈y, u〉, for each y → y′ ∈ R. We note from the proof of
Proposition 6.2 that this is precisely the condition u ∈ S⊥. The right hand side of (30) has resolved
the asymmetry between y′ and y. This allows us to rewrite it as follows. Let Ω ∈ RC be the vector
given by

Ω =
∑
y∈C

e〈y,u〉ωy .
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Since, {ωy} forms an orthonormal basis for RC , e〈y,u〉 = 〈ωy,Ω〉 for all y ∈ C, where now the inner-
product takes place in RC rather than RS . Using the bilinearity of the inner-product on RC , we can
rewrite the right hand side of (30) as

〈
∑

y→y′∈R
(κy→y′)(c∗)y(ωy′ − ωy),Ω〉 = 〈AκΨ(c∗),Ω〉 = 0 .

We see that 〈f(c), u〉 ≤ 0 with equality if, and only if, u ∈ S⊥.

Proposition 6.5 If a chemical reaction network has a fixed point c∗ ∈ PS for which AκΨ(c∗) = 0
then, for any c ∈ PS , 〈f(c), ln c− ln c∗〉 ≤ 0, with equality if, and only if, ln c− ln c∗ ∈ S⊥

This result has a remarkable consequence. Suppose that c ∈ PS is any fixed point of (8), so that
f(c) = 0. Then 〈f(c), ln c − ln c∗〉 = 0 and we must conclude that ln c − ln c∗ ∈ S⊥. But then, by
Proposition 6.2, c ∈ Z and so AκΨ(c) = 0. We have proved one of the most startling conclusions of
CRNT, which deserves to be singled out.

Theorem 6.2 ([11, Proposition 5.3 (iii) and (iv)]) In any chemical reaction network, if there exists
some fixed point c∗ ∈ PS for which AκΨ(c∗) = 0 then any fixed point, c ∈ PS with f(c) = 0, must
satisfy the same condition AκΨ(c) = 0.

If the deficiency of the network is 0 then we would know that there are no fixed points other than
those of the form AκΨ(c) = 0. Theorem 6.2 tells us this assumption about the deficiency is not
required. The more that we study it, the more stringent the condition AκΨ(c∗) = 0 appears.

There is still more that we can extract from it! The inequality of Proposition 6.5 is very suggestive.
Suppose that we could show, for fixed c∗ ∈ PS , that the vector field ln c− ln c∗ is a gradient. In other
words, suppose we could find a function h : PS → R such that ∇h(c) = ln c− ln c∗. It then follows
that h must decrease along the trajectories of (8), for suppose that t → c(t) is one such trajectory,
so that dc(t)/dt = f(c(t)). Then, using the chain rule,

d

dt
h(c(t)) =

∑
i∈S

∂h(c)
∂ci

dci
dt

= 〈∇h(c), f(c)〉 = 〈ln c− ln c∗, f(c)〉 .

By Proposition 6.5, dh(c(t))/dt ≤ 0 with equality if, and only if, c(t) is a fixed point of (8). Hence
h must strictly decrease along a trajectory until that trajectory reaches a fixed point. We have a
candidate for a (strict) Lyapunov function.

Recall that the existence of a strict Lyapunov function implies that trajectories in the vicinity
of a fixed point are attracted towards the fixed point and reach it asymptotically. There can be
no periodic orbits or other behaviour which avoids convergence to the fixed point, at least in the
immediate vicinity of the fixed point. Suppose that dc/dt = f(c) is a system of nonlinear ODEs,
where f : Rm → R

m, and that the system has a fixed point at c∗, so that f(c∗) = 0.

Definition 6.3 A function h : Rm → R is a Lyapunov function for the fixed point c∗ if

1. h(c) ≥ 0, for all c ∈ Rm, with equality if, and only if, c = c∗

2. dh(c(t))/dt ≤ 0 along any trajectory, t→ c(t).

If, furthermore, dh(c(t))/dt = 0 if, and only if, c(t) = c∗, then the Lyapunov function is strict.
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Theorem 6.3 (Lyapunov’s Theorem, [20, Chapter 9, §3, Theorem 1]) If h is a Lyapunov function
then c∗ is stable. That is, given any neighbourhood U 3 c∗, there exists some neighbourhood U1 3 c∗
in U such that any trajectory c(t) with c(0) ∈ U1 satisfies c(t) ∈ U for all t ≥ 0. If, furthermore,
the Lyapunov function is strict then c∗ is asymptotically stable. That is, U1 can always be chosen
so that u(t)→ c∗ as t→∞.

It is easy to construct h. In one dimension, lnx is integrable: simply take h(x) = x lnx−x. For the
vector function, h : PS → R, we can use the same trick as we did in the proof of Proposition 6.3:

h(c) = 〈c ln c− c− c ln c∗ + c∗, 1〉 . (31)

It is easy to check that ∇h = ln c− ln c∗ and that h(c∗) = 0. To see that h(c) > 0 unless c = c∗, let
us go back to the handy inequality we used in the proof of Proposition 6.5. Suppose that we are in
1 dimension and set x = ln c, x′ = ln c∗. It follows from (29) that

c(ln c∗ − ln c) ≤ c∗ − c

with equality if, and only if, c = c∗. Rearranging, this gives c ln c − c − c ln c∗ + c∗ ≥ 0. It follows
that, in any dimension, h(c) ≥ 0 with equality if, and only if, c = c∗. We see that h satisfies
the first condition in Definition 6.3. However, it does not satisfy the second condition because
dh(c(t))/dt = 〈ln c(t) − ln c∗, f(c(t))〉 = 0 if c(t) is any fixed point, including a fixed point in a
stoichiometric compatibility class different from the one containing c∗. We can avoid this problem
by restricting h to the stoichiometric compatibility class of c∗ and then applying Theorem 6.3. We
leave the details to the reader.

Asymptotic stability is a local property of a fixed point. The existence of a strict Lyapunov function
sometimes allows the basin of attraction of the fixed point to be estimated, as in [20, Chapter 9,
§3, Problem 8], but (31) does not lend itself to this. However, a strict Lyapunov function does rule
out certain global behaviours relative to the corresponding stoichiometric compatibility class. For
instance, it is easy to see that there can be no periodic orbits. This assertion is usually included
among the conclusions of the deficiency 0 theorem, [12, Theorem 6.1.1(2)].

We can now assemble all the things we have learned. What follows is the main result behind the
deficiency 0 theorem.

Theorem 6.4 In any chemical reaction network, suppose there exists a fixed point c∗ ∈ PS for
which AκΨ(c∗) = 0. The following statements hold.

1. The network is weakly reversible.

2. Every fixed point, c ∈ PS with f(c) = 0, satisfies AκΨ(c) = 0.

3. If Z is the set of all fixed points, Z = {c ∈ PS | f(c) = 0}, then lnZ is a coset of S⊥.

4. There is one, and only one, fixed point in each stoichiometric compatibility class.

5. Each fixed point has a strict Lyapunov function defined on its stoichiometric compatibility class
and is asymptotically stable relative to that class.

No assumption about the deficiency is required for Theorem 6.4. This is only needed to show the
existence of some fixed point c ∈ PS for which AκΨ(c) = 0. This we do in Theorem 7.1 in the
next section. It is easy linear algebra and something of an anti-climax after our excursions into
Perron-Frobenius theory, convex analysis and dynamical systems.
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7 Existence of fixed points

We observed in Lemma 3.1 that the bookkeeping function Ψ : RS → R
C is “log-linear”, so that, for

any c ∈ PC , ln Ψ(c) = Y T ln(c). This suggests a method for finding c ∈ PC such that Ψ(c) ∈ kerAκ.
Recall the notation used in Theorem 4.2. Suppose that there exists an element u ∈ kerAκ such
that u ∈ PC and lnu ∈ ImY T . Let x ∈ RS be such that Y T (x) = lnu and let c = exp(x), so that
c ∈ PS . By Lemma 3.1, lnu = Y T ln(c) = ln Ψ(c), so that u = Ψ(c). It follows that Ψ(c) ∈ kerAκ,
as required.

It remains only to translate this into a suitable condition. This is based on the observation that
the set of logarithms of positive elements in kerAκ has a particularly nice form. For y ∈ C and
1 ≤ i ≤ t, let pi,y = 〈χi, ωy〉. By construction of the χi, we know that pi,y = 0 if y 6∈ Ti, so that
χi =

∑
y∈Ti pi,yωy. Furthermore, pi,y > 0 if y ∈ Ti. Since the Ti are pairwise mutually disjoint, it

follows that
∑
i λiχi ∈ PC if, and only if, λi ∈ P for 1 ≤ i ≤ t. Let (kerAκ)+ = kerAκ ∩ PC and

choose any λi ∈ P for 1 ≤ i ≤ t. Then

ln(
∑
i

λiχi) = ln(
∑
i

∑
y∈Ti

λipi,yωy) =
∑
i

lnλi(
∑
y∈Ti

ωy) +
∑
i

∑
y∈Ti

(ln pi,y)ωy .

The first term on the right hand side may be rewritten as
∑
i(lnλi)ωTi . Since the λi were chosen

arbitrarily in P, it follows that ln(kerAκ)+ is a coset of span{ωT1 , · · · , ωTt}. The coset is determined
by the components pi,y or, equivalently, by the particular kinetics specified by κ.

Now consider the subspace U = ImY T + span{ωT1 , · · · , ωTt}. Since ln(kerAκ)+ is a coset of
span{ωT1 , · · · , ωTt}, there are two mutually exclusive possibilities. Either ln(kerAκ)+ ∩ U = ∅ or
ln(kerAκ)+ ⊆ U . In the latter case, since ln(kerAκ)+ is a coset of span{ωT1 , · · · , ωTt}, it is evident
that ln(kerAκ)+ ∩ ImY T 6= ∅. Hence there is an element with the properties needed to find a fixed
point, as above. Conversely, if such an element exists then the same argument as above shows that
ln(kerAκ)+ ∩ ImY T 6= ∅.

Lemma 7.1 ln(kerAκ)+ is a coset of span{ωT1 , · · · , ωTt}. Furthermore, either ln(kerAκ)+∩U = ∅
or ln(kerAκ)+ ⊆ U . The latter case holds if, and only if, there exists c ∈ PC such that AκΨ(c) = 0.

Suppose now that the network in question is weakly reversible. In this case U turns out to be
familiar. By Lemma 6.1 part 3, the terminal strong linkage classes coincide with the linkage classes
and, in particular, l = t. Let T = span{ωy′ − ωy | y → y′}. We know from the definition of Aκ that
ImAκ ⊆ T . However, by Theorem 4.2 part 3, dim ImAκ = n− t and, by Lemma 3.2 part 3, dimT =
n − l. Hence, ImAκ = T . By Lemma 3.2 part 2, T⊥ = span{ωL1 , · · · , ωLl} = span{ωT1 , · · · , ωTt}.
Furthermore, by elementary linear algebra, ImY T = (kerY )⊥. Hence,

U = (kerY )⊥ + T⊥ = (kerY ∩ ImAκ)⊥

and we recognise in this the subspace of RC whose dimension is the deficiency of the network.

Theorem 7.1 If a chemical reaction network has deficiency 0 then it has a fixed point c ∈ PS for
which AκΨ(c) = 0 if, and only if, it is weakly reversible.

The usual form of the deficiency 0 theorem, as in [12, Theorem 6.1.1], can now be recovered by
combining Theorem 6.4 with Theorem 7.1.
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