
Notes on the prion model

Introduction

Written by Jeremy Gunawardena (jeremy@hms.harvard.edu) for MCB 195, “A systems approach
to biology”, on 10 February 2005, with thanks to Shai Shen-Orr and Becky Ward for their helpful
editorial suggestions.

This note should be read in conjunction with what we discussed in Lectures 1 and 2, the slides for
which are available on the website. It goes through the details of how to derive the “full model”
of prion growth in terms of the state variables x and yi and then shows how to convert this to
the “simple model”, which uses only the state variables x, y and z. Recall that these variables are
defined as follows

x = amount of monomer
yi = amount of polymer of length i
y = total amount of polymer y =

∑
yi

z = total mass of polymer in monomer units z =
∑

iyi

and that this model of polymerisation has a nucleus of size n but no nucleation process, so yi = 0
for 1 ≤ i ≤ n− 1. See the last section for more background.

Monomer production and degradation

We assume that monomer is produced at a constant rate λ (zero-order rate constant, with units
of (mols)(time)−1) and degraded at a rate that is proportional to the amount of monomer present,
with d being the constant of proportionality (first order rate constant, with units of (time)−1). If x
is the amount of monomer present, in units of (mols), then the rate at which x is produced, dx/dt,
is given by the difference between production and degradation

dx

dt
= λ− dx . (1)

This equation is simple but it is instructive to remember how to solve it. If we make the substitution
y = x− λ/d, then

dy

dt
=

dx

dt
= λ− d(y + λ/d) = −dy .

It follows that y(t) = exp(−dt)y(0), where y(0) is the initial condition, or starting value, of y.
Transforming back to x, we see that

x(t) = exp(−dt)(x(0)− λ/d) + λ/d . (2)

If we start this with more monomer than λ/d, so that x(0) > λ/d, then x(t) decreases rapidly
towards λ/d. If we start it with less monomer than λ/d, so that x(0) < λ/d then x(t) increases
rapidly to λ/d. Either way, the tendency of the system is always to move towards the point at which
production and degradation are exactly in balance, which is achieved when x = λ/d. If we start the
system at this point, so that x(0) = λ/d, then we see from (2) that the system stays there forever,
x(t) = λ/d. The point λ/d is an example of a steady state, at which dx/dt = 0.

Polymer clearance and growth

Now lets add polymer into the mix. We assume that polymer is cleared at a rate a (first order rate
constant) and grows by adding monomer at either end at a rate β (second order rate constant, with
units of (mols)−1(time)−1). Let yi denote the amount of polymer of length i, in units of (mols). The
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effect of polymer on the equation for monomer, (1), is that it introduces a new term corresponding
to removal of monomer by incorporation onto growing polymer. Polymer of length i incorporates
monomer at a rate βxyi. This takes place for polymers of all lengths at or above the nucleus size,
n. Hence, the overall contribution to the equation for dx/dt is

dx

dt
= λ− dx−

∞∑
i=n

βxyi .

As for polymer of length i, that grows by addition of monomer to polymer of length i− 1, while it
disappears by incorporation into polymer of length i + 1. It is also cleared at rate a. Hence, the
equation for dyi/dt has 3 contributions

dyi

dt
= βxyi−1 − βxyi − ayi for i ≥ n .

This was the point we got to at the end of the first lecture. You should convince yourself that
although each individual polymer grows, the number of polymers does not change. To allow for
explosive growth in the number of polymers we have to introduce breakage.

Polymer breakage

A polymer of length i can break after its j-th monomer component, where j runs from 1 to i − 1.
This produces two smaller polymers, a left-hand one of length j and a right hand one of length i− j.
The rate for this breakage is given by a first order rate constant b, which we assume for simplicity,
following [1], to be independent of both i and j. If either of the smaller pieces is smaller than the
nucleus size, it immediately disintegrates into its constituent monomers. Note that a small piece of
size j, where j < n, produces j monomers.

This affects the growth of polymer of length i in two ways. First, it diminishes polymer by breaking
at any of i−1 positions. Each such breakage happens at rate byi. The total contribution is therefore
(i− 1)byi. Second, it increases polymer of length i by breaking polymers of greater length. If j > i
then there are two ways for a polymer of length j to break off a piece of length i, once from the left
and once from the right. Each happens at rate byj . The total rate for both ways of breaking is 2byj

and this happens for all j > i. Hence, the rate of growth of yi acquires two additional terms

dyi

dt
= βxyi−1 − βxyi − ayi − (i− 1)byi +

∞∑
j=i+1

2byj for i ≥ n .

As for monomer, it is affected only by the breaking off of pieces of length smaller than the nucleus
size. For a polymer of length i, this can happen on the left at n − 1 positions. Let j denote the
position, so that 1 ≤ j ≤ n− 1. This breakage takes place at a rate byi but it produces j monomer
units, so its contribution to the growth of x is jbyi. Breakage on the right is exactly symmetric, so
the contribution from both forms of breaking is 2jbyi. This takes place for each i ≥ n and for each
1 ≤ j ≤ n− 1. Hence, dx/dt is given by

dx

dt
= λ− dx−

∞∑
i=n

βxyi +
∞∑

i=n

n−1∑
j=1

2bjyi .
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The full model

Putting everything together, we have the following set of equations for the growth of x and yi

dx

dt
= λ− dx−

∞∑
i=n

βxyi +
∞∑

i=n

n−1∑
j=1

2bjyi

dyi

dt
= βxyi−1 − βxyi − ayi − (i− 1)byi +

∞∑
j=i+1

2byj for i ≥ n (3)

yi = 0 for 1 ≤ i ≤ n .

Simplifying the full model

Let y =
∑∞

i=n yi denote the total amount of polymer and z =
∑∞

i=n iyi denote the total mass of
polymer in monomer units. Let us first simplify the equation for dx/dt. Since β and x do not depend
on i,

∞∑
i=n

βxyi = βx

( ∞∑
i=n

yi

)
= βxy .

Similarly, since 2byi does not depend on j,

∞∑
i=n

n−1∑
j=1

2bjyi =
∞∑

i=n

2byi

n−1∑
j=1

j

 .

The sum of the first n−1 integers is easily evaluated as n(n−1)/2 (Gauss, who gave us the Gaussian
distribution and many other wonderful things, is supposed to have worked this out for himself at
the age of 4!). Hence, this term simplifies to byn(n− 1). The equation for dx/dt now looks like

dx

dt
= λ− dx− βxy + bn(n− 1)y .

Now consider dy/dt. Since differentiation is a linear operation,

dy

dt
=
∞∑

i=n

dyi

dt
.

It follows that we have to take the equations for dyi/dt and add them to each other. Consider only
the first two terms in the equation for dyi/dt taken from (3) above. Adding these up for each i from
n onwards

0− βxyn

βxyn − βxyn+1

βxyn+1 − βxyn+2

...

evidently results in everything cancelling out (note that the 0 on the first row comes about because
yi = 0 for i smaller than the nucleus size n).

The next term in the equation for dyi/dt gives −ay in the equation for dy/dt and the term after
that gives −b(z − y).
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Now consider the last term in the equation for dyi/dt and let us write it out in full, omitting the
constant factor 2b for the moment

yn+1 + yn+2 + yn+3 · · ·
... + yn+2 + yn+3 · · ·
...

... + yn+3 · · ·

It is very important to note that the first term on the row for dyi/dt is yi+1 and not yi. You should
refer back to the derivation of (3) to see why this is so. If we add the above array vertically first
and then horizontally (using the same trick that young Gauss discovered for working out the sum
of an arithmetic progression), we get

yn+1 + 2yn+2 + 3yn+3 + · · · =
∞∑

i=n+1

(i− n)yi . (4)

However, we know that

∞∑
i=n+1

yi = y − yn and
∞∑

i=n+1

iyi = z − nyn (5)

Hence, (4) can be simplified so that the contribution to dy/dt is (remembering to put back the 2b
we left out above)

2b(z − nyn − n(y − yn)) = 2b(z − ny) .

Note the little bit of magic that causes nyn to disappear. It would have been a nuisance if it hadnt!
The total contribution of all the pieces to dy/dt is

−ay − b(z − y) + 2b(z − ny) = −ay + b(z + y)− 2nby ,

so that
dy

dt
= −ay + b(z + y)− 2nby .

Finally, consider dz/dt. Again because differentiation is a linear operation,

dz

dt
=
∞∑

i=n

i
dyi

dt
.

As before, first consider the contribution to dz/dt made by the first two terms in the equation for
dyi/dt,

0− nβxyn

(n + 1)βxyn − (n + 1)βxyn+1

(n + 2)βxyn+1 − (n + 2)βxyn+2

...

When these rows are added together, it is easy to check that the only terms that remain are

βxyn + βxyn+1 + βxyn+2 + · · · = βxy .

The next term in dyi/dt contributes −az to dz/dt. The term after that is potentially a problem as
it contributes

− b
∞∑

i=n

i2yi + bz . (6)
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We had better get rid of these i2yi terms or we will need to introduce yet another variable like z in
an infinite regress. This piece of magic comes from the last term in the equation for dyi/dt. Writing
it out in full, without the 2b, we get

nyn+1 + nyn+2 + nyn+3 · · ·
... (n + 1)yn+2 + (n + 1)yn+3 · · ·
...

... (n + 2)yn+3 · · ·

Note that the rows start with yi+1 but are multiplied by i. It is easy to make a mistake about this,
with disastrous results! Adding this array up vertically first and then horizontally, we get

nyn+1 + (n + n + 1)yn+2 + (n + n + 1 + n + 2)yn+3 + · · · . (7)

If we look at the term with yi, where i ≥ n+1, the factor multiplying yi is the sum of all the integers
from n to i− 1. Since the sum of all the integers from 1 to i− 1 is i(i− 1)/2 and the sum of all the
integers from 1 to n− 1 is n(n− 1)/2, we can rewrite (7) as

∞∑
i=n+1

(i(i− 1)/2− n(n− 1)/2)yi =
1
2

( ∞∑
i=n+1

i2yi − (z − nyn)− n(n− 1)(y − yn)

)
,

where we have used (5) as we did above while calculating dy/dt. This is almost what we need to
cancel out the i2yi sum that appeared in (6) but the i index runs from n + 1, not n. Forgetting
about the 1/2 for the moment, we can rewrite what we have as

∞∑
i=n

i2yi − n2yn − (z − nyn)− n(n− 1)(y − yn) .

Rearranging the terms in this, we get
∞∑

i=n

i2yi − z − n(n− 1)y − (n2 − n− n(n− 1))yn .

Once again, the term with yn magically disappears and we are left with
∞∑

i=n

i2yi − z − n(n− 1)y .

If we put back the 1/2 and the 2b and combine this with (6) we see that the terms with i2yi cancel.
Combining this with all the other terms we worked out above we finally get

βxy − az + bz − bz − bn(n− 1)y = βxy − az − bn(n− 1)y .

The simple model

Putting together all the pieces, we arrive at the following simplified model, in terms of the quantities
x, y and z

dx

dt
= λ− dx− βxy + bn(n− 1)y

dy

dt
= −ay + b(z + y)− 2nby

dz

dt
= βxy − az − bn(n− 1)y .

which is what we used in the lectures. It is quite remarkable that so many things cancel out and allow
us to make this simplification. Of course, we have helped to make it so by assuming that parameters
like b do not depend on polymer length. Nevertheless, even having made that assumption, lots of
“magic” has to happen. That is usually a sign that something systematic is going on “behind the
scenes”, as is the case in real magic, but I have no idea what that something could be.

5



Discussion

This simplified model was first written down by Masel, Jansen and Nowak in [1]. The discussion in
the Appendix asserts that it can be derived from the full model (3) by “summation”. Indeed it can
but, as you see, it takes a little work. Surprisingly, MJN did not analyse the simple model as we
did in class but instead made a linear approximation to it under the assumption that the amount
of monomer was approximately constant. This is true for the values of rate constants that we have
been using, where the monomer rates are much faster than the polymer rates. You may have noticed
this quasi-steady state when playing with MATLAB.

This same polymerisation model was discussed again by Pöschel, Brilliantov and Frömmel in [2].
Unfortunately, they made a serious error in formulating the detailed model and made things even
worse by suggesting that MJN had made the mistake. MJN pointed out the error in a letter
(Biophysical Journal, 87:728, 2004) with which PBF had to agree (Biophysical Journal, 87:729,
2004). You should read the letters before reading PBF, which has some nice observations in it
despite the error (particularly about the distribution of polymer lengths, which is something we did
not look at in class). Surprisingly, once again, they fail to point out the transcritical bifurcation
from polymer collapse to polymer growth and seem to confuse it with a concentration threshold. In
many ways, the bifurcation is the most interesting feature of the model.
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